# Optimization of Hydrocolloid Levels in Medium-Chain Triglyceride-Enriched Soymilk by Response Surface Methodology

Irene Tonette Y. Villones<sup>1</sup> and Benelyn D. Dumelod<sup>2</sup>

<sup>1</sup>University of the Philippines Diliman, Quezon City, 1101 Philippines; iyvillones@up.edu.ph <sup>2</sup>University of the Philippines Diliman, Quezon City, 1101 Philippines; bddumelod@up.edu.ph

# INTRODUCTION

- •Dietary fats and oils are widely composed of long-chain fatty acids (LCFA), however, they usually induce negative effects on glucose and insulin balance, as well as in body weight and adipose tissue mass gain [2,3].
- •Medium-chain triglycerides (MCT), fractionated from coconut oil, are alternative fat derived from medium-chain fatty acids (MCFA) which may be incorporated into foods and beverages[4-7].
- •Emulsifiers and stabilizers enhance emulsion stability [15-17], they act as steric stabilizing agents that provide complete surface coverage and strong adsorption to protect the dispersed molecules from aggregating during processing and storage [18,19].
- •Developing an MCT-enriched soymilk emulsion with the optimum level of emulsifier and stabilizers that is consumer-acceptable, stable, and comparable in terms of cost, can help address the need for novel applications of both coconut oil and soymilk in the country.

## **MATERIALS AND METHODS**

### **PRELIMINARY STUDY**

Based on formulation [20] with 30 mL of MCT oil per 500 mL soymilk; glycerine at 0.2% (v/v) was added
 Stabilizers capability tested – 0.03% (w/v) each of κ-carrageenan, and LBG, and 0.025% (w/v) κ-carrageenan LBG (50% carrageenan : 50% LBG) combination

#### DETERMINATION OF OPTIMAL CONCENTRATIONS

•Concentration ranges for the independent variables  $X_1$  (glycerine),  $X_2$  (k-carrageenan), and  $X_3$  (LBG), were based on suggested literature values [22, 23]

• Rotatable, central composite design (CCD) containing six replicate runs at the center point and 14 design points was used to determine the effects on three responses ( $Y_1$  = overall acceptability,  $Y_2$  = emulsion stability, and  $Y_3$  = cost) and were analyzed using Response Surface Methodology (RSM).

### **OVERALL ACCEPTABILITY EVALUATION**

Fifty-one (51) untrained panelists evaluated the MCT-soymilk formulations
Overall acceptability through sensory evaluation using a 9-point hedonic scale
Data gathered were analyzed using one-way analysis of variance (ANOVA) determined at 5% significance level with SPSS Statistics version 22 Software (IBM Corporation, Armonk, New York).

### **EMULSION STABILITY DETERMINATION**

• Degree of emulsion stability was measured based on the volume of intact MCT-soymilk emulsion below the separated oil, if any.

• Phase separation was recorded for 90 min at 5 min intervals.

### **PRODUCT COST CALCULATION**

• Product cost (PC) for each run, PC = (n x PM) + SM + M + K + L + G

|     | Inc               | dependent Variables   |             | Dependent Variables      |                                         |                     |  |
|-----|-------------------|-----------------------|-------------|--------------------------|-----------------------------------------|---------------------|--|
| Run | X1, Glycerine (%) | X2, к-Carrageenan (%) | X3, LBG (%) | Overall<br>Acceptability | Emulsion Stability <sup>1</sup><br>(mL) | Price Cost<br>(Php) |  |
| 1   | 2.00              | 0.06                  | 0.03        | 6.20 ± 1.15              | 8.6                                     | 306.38              |  |
| 2   | 1.00              | 0.03                  | 0.03        | 6.04 ± 1.30              | 10.0                                    | 292.07              |  |
| 3   | 1.00              | 0.06                  | 0.06        | 6.21 ± 1.24              | 10.0                                    | 293.61              |  |
| 4   | 1.50              | 0.04                  | 0.04        | 4.98 ± 1.75              | 10.0                                    | 299.62              |  |
| 5   | 2.00              | 0.03                  | 0.06        | 4.78 ± 1.54              | 10.0                                    | 306.43              |  |
| 6   | 1.50              | 0.04                  | 0.04        | 6.82 ± 1.18              | 9.1                                     | 299.62              |  |
| 7   | 2.00              | 0.06                  | 0.06        | 5.94 ± 1.38              | 10.0                                    | 307.17              |  |
| 8   | 2.00              | 0.03                  | 0.03        | 6.24 ± 1.26              | 8.4                                     | 305.64              |  |
| 9   | 1.00              | 0.03                  | 0.06        | $7.02 \pm 0.93$          | 7.6                                     | 292.87              |  |
| 10  | 1.00              | 0.06                  | 0.03        | 6.28 ± 1.34              | 9.5                                     | 292.81              |  |
| 11  | 1.50              | 0.04                  | 0.04        | 6.49 ± 1.39              | 9.7                                     | 299.62              |  |
| 12  | 1.50              | 0.0                   | 0.04        | 6.53 ± 1.33              | 10.0                                    | 299.62              |  |
| 13  | 0.66              | 0.04                  | 0.04        | 6.43 ± 1.20              | 10.0                                    | 288.21              |  |
| 14  | 1.50              | 0.04                  | 0.01        | 6.14 ± 1.28              | 10.0                                    | 298.95              |  |
| 15  | 1.50              | 0.01                  | 0.04        | 6.86 ± 1.28              | 8.6                                     | 299.00              |  |
| 16  | 1.50              | 0.04                  | 0.04        | 6.31 ± 1.09              | 10.0                                    | 299.62              |  |
| 17  | 1.50              | 0.04                  | 0.08        | 6.02 ± 1.35              | 10.0                                    | 300.29              |  |
| 18  | 1.50              | 0.08                  | 0.04        | 5.75 ± 1.66              | 10.0                                    | 300.24              |  |
| 19  | 1.50              | 0.04                  | 0.04        | 6.45 ± 1.27              | 6.5                                     | 299.62              |  |
| 20  | 2.34              | 0.04                  | 0.04        | 6.49 ± 1.05              | 10.0                                    | 311.03              |  |

**Table S1.** Software-generated actual concentrations (%) of combinations of glycerine, κ-carrageenan, and LBG for the optimization of hydrocolloid levels in MCT-enriched soymilk with the corresponding data for overall acceptability, emulsion stability, and product cost

<sup>1</sup> Results are presented as volume of intact MCT-soymilk emulsion at the bottom of the cylinder after having been allowed to stand undisturbed for 90 min.

**Table S3.** Software-generated actual concentration (%) combinations of glycerine, κ-carrageenan, and LBG generated for model validation of hydrocolloid levels in MCT-enriched soymilk

| Run | Model         | X1, Glycerine (%) | X2, к-Carrageenan (%) | X3, LBG (%) |
|-----|---------------|-------------------|-----------------------|-------------|
| 1   | Optimal       | 1.00              | 0.03                  | 0.03        |
| 2   | Sub-optimal 1 | 1.00              | 0.06                  | 0.03        |
| 3   | Sub-optimal 2 | 1.00              | 0.06                  | 0.04        |

# RESULTS



## Effect of Hydrocolloid Concentrations on Overall Acceptability

•A two-factor interaction (2FI) model was selected.



OA = 6.19 - 0.10K - 0.07L - 0.17G + 0.02KL + 0.21KG - 0.33LG

**Figure 1.** Response surface plots for overall acceptability of MCT-enriched soymilk as affected by varying concentrations of  $\kappa$ -carrageenan (K), LBG (L), and glycerine (G).



## Effect of Hydrocolloid Concentrations on Emulsion Stability

•A quadratic model was selected.



 $ES = 9.24 + 0.32K + 0.08L - 0.01G + 0.34KL - 0.21KG + 0.61LG - 0.08K^{2} + 0.16L^{2} + 0.16G^{2}$ 

**Figure 2.** Response surface plots for emulsion stability of MCT-enriched soymilk as affected by varying concentrations of  $\kappa$ -carrageenan (K), LBG (L), and glycerine (G).



## Effect of Hydrocolloid Concentrations on Product Costs

•A linear model was selected.



PC = 299.62 + 0.37K + 0.40L + 0.67G

**Figure 3.** Response surface plots for product cost of MCT-enriched soymilk as affected by varying concentrations of κ-carrageenan (K), LBG (L), and glycerine (G).

### Validation of the Models with the Optimal Concentrations

**Table 2.** Predicted and actual values for overall acceptability, emulsion stability 1, and product cost of optimal and suboptimal MCT-enriched soymilk formulations

| Response                | Optimal   |              | Confidence Interval |        | Prediction Interval |        |
|-------------------------|-----------|--------------|---------------------|--------|---------------------|--------|
| Kesponse                | Predicted | Actual       | Low                 | High   | Low                 | High   |
| Overall Acceptability   | 6.39      | 7.35         | 5.17                | 7.68   | 4.75                | 8.10   |
| Emulsion Stability (mL) | 9.80      | 9.9 <u>0</u> | 6.58                | 13.06  | 5.54                | 14.10  |
| Product Cost (Php)      | 292.00    | 292.00       | 292.00              | 292.00 | 292.00              | 292.00 |

<sup>1</sup> Results are presented as volume of intact MCT-soymilk emulsion at the bottom of the cylinder after having been allowed to stand undisturbed for 90 min.

# CONCLUSIONS

•An acceptable and stable medium chain triglyceride (MCT)-enriched soymilk was successfully developed through the determination of optimal concentrations of glycerine, kappa-carrageenan, and LBG.

- •Incorporation of the hydrocolloids improved not only the emulsion stability but also its overall consumer acceptability as compared to MCT-soymilk emulsion alone.
- With the use of response surface methodology (RSM), the study was able to successfully generate validated models for determining the optimal concentrations of glycerine, κ-carrageenan, and LBG and adequately predict the overall acceptability, emulsion stability, and product cost responses.

# REFERENCES

1. Lester, J. Nomenclature of Fatty Acids and Their Classification. 2016.

- 2. Iowa State University. Cholesterol and Cholesterol Oxides on Coronary Heart Diseases. 2018.
- 3. Montgomery, M.K.; Osborne, B.; Brown, S.H.J.; Small, L.; Mitchell, T.W.; Cooney, G.J.; Turner, N. Contrasting metabolic effects of medium-vs. long-chain fatty acids in skeletal muscle. J. Lipid Res. 2013, 59, 1–38.
- 4. Bach, A.C.; Ingenbleek, Y.; Frey, A. The usefulness of dietary medium-chain triglycerides in body weight control: fact or fancy? J. Lipid Res. 1996, 37, 7-8–726.
- 5. Marten, B.; Pfeuffer, M.; Schrezenmeir, J. Medium-chain triglycerides. Int. Dairy J. 2006, 16, 1374–1382.
- 6. Babayan, V.K. Medium-chain triglycerides-their composition, preparation, and application. J. Am. Chem. Soc. 1968, 45, 23-25.
- 7. Shah, N.D.; Limketkai, B.N. The use of medium-chain triglycerides in gastrointestinal disorders. Pract. Gastroenterol. 2017, 160, 20-28.
- 8. Abiodun, P. Use of soya-beans for the dietary prevention and management of malnutrition in Nigeria. Acta Paediatr. Scand. Suppl. 2008, 374, 175–182.
- 9. Chen, S. Preparation of Fluid Soymilk. Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs; Applewhite, T.H, Ed.; American Oil Chemists' Society: Champaign, Illinois, 1989.
- 10. Jiang, S.; Cai, W.; Xu, B. Food quality improvement of soymilk made from short-time germinated soybeans. Foods 2013, 2, 198–212.
- 11. Muredzi, P. Soybean, Nature, Processing, and Utilisation; Lambert Academic Publishing, 2013; p. 229.
- 12. Fabe, J.; Goldstein, R; Blondheim, O.; Stankiewicz, H.; Darwashi, A.; Bar-Maor, J.A.; Gorenstein, A.; Eidelman, A.I.; Freier, S. Absorption of MCT in infant stomach. J. Pediatr. Gastroenterol. Nutr. 1968, 7, 189–195. 13. Harkins, R.W.; Sarett, H.P. Medium-chain triglycerides. J. Am. Med. Assoc. 1968, 203, 272–274.
- 14. Marten, B.; Pfeuffer, M.; Schrezenmeir, J. Medium-chain triglycerides. Int. Dairy J. 2006, 16, 1374–1382.
- 15. Dickinson, E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll. 2009, 23, 1473–1482.
- 16. Moonen, H.; Bas, H. Mono- and diglycerides. In Emulsifiers in Food Technology. Whitehurst, R.J., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2004; pp. 40-45.
- 17. Mikkonen, K.S.; Tenkanen, M.; Cooke, P.; Xu, C.; Rita, H.; Willfor, S.; Holmborn, B.; Hicks, K.B.; Yadav, M.P. Mannans as stabilizers in oil-in-water beverage emulsions. J. Food Sci. Technol. 2009, 42, 849-855.
- 18. Dickinson, E. Hydrocolloids acting as emulsifying agents how do they do it? Food Hydrocoll. 2018, 78, 2-14.
- 19. Ozturk, B.; McClements, D.J. Progress in natural emulsifiers for utilization in food emulsions. Curr. Opin. Food Sci. 2016, 7,1–6.
- 20. Reilly, R. Special formula preparations that can be prepared in the home. Dis. Mon. 2006, 17, 1–30.
- 21. McClements, D.J. Critical reviews of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649.
- 22. Corbion. Available online: https://www.corbion.com/food/emulsifiers (accessed 1 April 2019).
- 23. Food and Agriculture Organization of the United Nations. Available online http://www.fao.org/tempref/codex/Meetings/CCNFSDU/ccnfsdu36/CRDS/CRD\_33.pdf (accessed 1 April 2019).
- 24. Spagnuolo, P.A.; Dagleish, D.G.; Goff, H.D.; Morris, E.R. Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers. Food Hydrocoll. 2005, 19, 371–377.
- 25. Lal, S.N.D.; O'Connor, C. Eyres, L. Application of emulsifiers/stabilizers in dairy products of high rheology. Adv. Colloid Interface Sci. 2006, 123–126, 433–437.
- 26. Kampf, N.; Nussinovitch, A. Rheological characterization of k-carrageenan soy milk gels. Food Hydrocoll. 1997, 11, 261–269.
- 27. Vega, C.; Dalgleish, D.G.; Goff, H.D. Effect of k-carrageenan addition to dairy emulsions containing sodium caseinate and locust bean gum. Food Hydrocoll. 2004, 19, 187–195.
- 28 Barak, S.; Mudgil, D. Locust bean gum: processing properties and food applications—a review. Int. J. Biol. Macromol. 2014, 66, 74-80.
- 29. Camacho, M.M.; Martinez-Navarrete, N.; Chiralt, A. Rheological characterization of experimental dairy cream formulated with locust bean gum (LBG) and I-carrageenan combinations. Int. Dairy J. 2004, 15, 243–248.
- 30. Choi, S.J.; Won, J.W.; Park, K.M.; Chang, P.S. A new method for determining the emulsion stability index by backscattering light detection. J. Food Process Eng. 2014, 37, 229-236.
- 31. Kim, C.; Choi, K.K. Reliability-based design optimization using response surface method with prediction interval estimation. J. Mech. Des. 2008, 130, 12401-1-12401-12.