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Definition of ecosystem invasibility

 Ininvasion ecology, the term ‘invasibility” has been coined to
describe the susceptibility (an intrinsic property) of recipient
ecosystems to invasive species, a manifestation of the
Interactions of multiple processes and factors (Lonsdale
1999)

« The invasibility of an ecosystem to biological invasion is
determined by its structure, local disturbance, propagule
pressure level, and the biological traits of the invasive species
(Davis et al. 2000).

» As for a specific invasive species such as Chinese tallowtree
(Triadica sebifera), the invasibility of an ecosystem can be
guantified by its community-landscape structure, propagule
pressure and disturbance/stress regime (Alpert et al. 2000,
Davis et al. 2000, D’Antonio et al. 2001).



The conceptual diagram of tallow invasion at the micro scale
showing the filters that affect tallow invasion processes
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A case study: Tallow tree invasion in the Grand Bay

National Wildlife Refuge (GBNWR)

GBNWR is

« Alandscape of
~18,000 ac

dominated by

longleaf/slash

pine flatwoods and

savannas.

* Other ecosystems
Include salt marshes,
maritime forest,
wetlands, and bays.
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Data collection/preparation

* The plot was then divided into a grid of contiguous quadrats
of ~30 m? in size (n = 281).

* The species and dbh, if present, of all mapped trees
(n = 2,190) using a high-resolution GPS device were measured
and recorded.

* The raster data of six filters including distance to the nearest
seed trees, distance to the nearest road or the hiking trall,
overstory canopy closure (%), basal area ratio of pine to
hardwoods, understory grass coverage (%), and elevation
(microtopographic condition) were generated to predict
spatially-varying probability of tallow invasion by size class
(trees, saplings and seedlings)



Methods

* First, generate a multitype planar point process (PPP) to

{Z(s), s € D} to quantify/map the spatial distribution of Chinese
tallow and other native species.

« Compute the cross-type pair correlation function (pcfcross,
g(r)) to examine the spatial relationship between tallow
(seedlings, saplings and trees) and other overstory trees (pine
and hardwoods) across different spatial scales r.

« Compute the nonparametic (smoothed) rhohat (p(Z(s))
function to quantify the partial effect of individual filters on local
iIntensities of tallow trees, saplings and seedlings.

* Run the multitype point process model (relrisk.ppm) by
incorporating the polynomials of all six spatial filters to predict
spatial probability of tallow: P(y,u) = X (ﬁ + ﬂy) + &



Results: Spatial distribution patterns
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Results: Spatial relationships between
tallow and overstory pine and hardwoods
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Results: Spatial heterogeneity of biotic and
abiotic filters used In this study
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Results: Change of local densities of tallow
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Results : Change of local densities of tallow
with biotic and abiotic filters (cont.)
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Results: Model performances and diagnostics

Full model: D+O+U
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Results: Model performances and diagnostics

The sub-model with dispersal filters
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Results: Model performances and diagnostics

The sub-model with overstory filters
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Results: Model performances and diagnostics

The sub-model with understory filters
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Results: Model performances and diagnostics

The sub-model with dispersal + overstory filters
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Results: Model performances and diagnostics

The sub-model with dispersal + understory filters
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Results: Model performances and diagnostics

The sub-model with overstory + understory filters
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Results: Multitype point process models (full

Size classes

models and sub-models)
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1)

2)

3)

4)

Summary

Dispersal filters play a pivotal role for predicting spatial
probability of tallow invasion.

None of the dispersal (D), overstory (O) and understory
(U) filters are adequate for predicting spatial probability
of tallow invasion. Either D+U filters or D+U filters will
be needed to accurately predict spatial probability of
tallow invasion.

The O+U filters define the therotical invasibility of a
community, but the D filters have to be included with the
O and/or U filters to define the realized invasibility
(observed invasion outcomes).

Management of tallow should first focus on quantifying
the D filters and then evaluating the O and U filters for
Invasion risk control in conserving slash pine flatwoods



Summary (Cont.)

3) The role of fire in tallow invasion changes with
Invasion stages: short burn interval/time since last fire

favors tallow seedling colonization and sapling
establishment, but long burn interval favors large

tallow tree development.

4) Overall, ecosystem invasibility can be quantified using
multiple measures and by invasion stages, and the
effect contributing factors be evaluated in a spatially-

explicit context (landscape).
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