New data on host range and geographical distribution of Dothistroma needle blight in Ukraine

<u>Kateryna Davydenko^{1,2}</u>, Denis Baturkyn³, Ihor Hnoievyi⁴ and Olena Shcherbak⁴

1 - Ukrainian Research Institute of Forestry and Forest Melioration, Ukraine; 2 - Swedish University of Agricultural Sciences, Sweden; 3 - Forest Protection Service "Kharkivlisozahyst", Ukraine; 4 - Kharkiv State Zooveterinary Academy, Ukraine

The 1st International Electronic Conference on Forests — Forests for a Better Future: Sustainability, Innovation, Interdisciplinarity 15/11/2020 - 30/11/2020

IECF
2020Forest area distribution by
tree species (over 30 species)(State Forerst resources Agency, 2018)

Pinus nigra ssp. pallasiana (Crimean pine)

Synonims: *Pinus nigra* J.F.Arnold variety *yaltirikiana* C.U.Alptekin *Pinus pallasiana* lamb.

(IUCN 2015. *The IUCN Red List of Threatened Species. Version 2015-3*) The most common species are P. sylvestris, P. nigra subsp. pallasiana

IECF 2020 Dothistroma pini Hulbary and othistroma septosporum (Dorog.) M. Morelet in Ukraine

IECF
2020Dothistroma pini Hulbary

- In November, 2004, strong needle blight was observed in the stands of *P.nigra ssp. pallassiana* 15 – 40 years old
- In 2008 collected needles from south Ukraine and south-western Russia were studied. *D.pini* was confirmed in this region.(Barnes et al., 2008)

IECF 2020 Dothistroma pini Hulbary

- Since the 2004, DNB has increased significantly resulting in loss of yield and decline of pine
- Most common in dense 3-25 years old stands

We observed that DNB has dramatically increased during the last decade in south Ukraine on Crimean pine while the *P. sylvestris* has not been much affected and was observed as a tolerant species to DNB

• South Forest Steppe zone (Kherson, Crimean pine)

IECF 2020 *DNB* in Ukraine, 2016

Region	Part of Ukraine	Pine species	D.p	D.s	Other fungal pathogens
		P. nigra subsp. nigra var.			
Crimea	South	pallasiana	+	-	Diplodia pinea,
		P. nigra subsp. nigra var.			Diplodia pinea,
Kherson	South	pallasiana	+	+	Brunchorstia pinea
		P. nigra subsp. nigra var.			Diplodia pinea,
Mikolaiiv	South	pallasiana	+	+	Brunchorstia pinea
		P. nigra subsp. nigra var.			
Kharkiv	East	pallasiana	+	-	Diplodia pinea
Kharkiv	East	P.sylvestris	+	+	Diplodia pinea
Kharkiv	East	P.nigra	+	-	
Kharkiv	East	P. mugo	+	+	
Kharkiv	East	P. strobus	_	_	
Kharkiv	East	P. tunbergii	_	+	
Kharkiv	East	P. densiflora	+	+	

Other pathogens - Spheropsis sapinea

IECF 2020

Lophodermium seditiosum Mint

L. seditiosum

IECF 2020 Sclerophoma pithyophila

IECF
2020Gremmeniella abietina

 Damage by insect dominated in South and East forest stands 10-50-year old while damage by DNB amounts by 22.5 and 12.4 % respectively.

IECF
2020Different needle diseases on
Pinus nigra ssp.pallasiana

IECF 2020 *Pinus sylvestris*

Conclusions

- Conventional PCR and primers specific to *D. septosporum* and *D. pini* have been used to identify the fungus directly from DNA extracted needle material.
- DNB was detected for 8 pine species including 3 subspecies and 2 spruce species, among them *Pinus nigra* subsp. *pallasiana* and *P. sylvestris* were the most frequent hosts.
- Results showed that both *D. septosporum* and *D. pini* were present on *P. nigra subsp. pallasiana* on the same trees and even in the same needles. Moreover, D. septosporum was found first in Ukraine on *Pinus ponderosa* Douglas, *Pinus banksiana* Lamb and *Pinus contorta* Douglas in the arboretum as well as *Picea pungens* Engelm and *Picea abies* (L.) H. Karst.
- For Ukraine, *D. pini* was found *on P.nigra* pallasiana and *on P.mugo*, *P.densiflora*, *P.tunbergii*, *P.nigra* and *P.sylvestris*
- Also, we detected of complex of fungal pathogens of pine needle as a Diplodia pinea, Brunchorstia pinea, Cyclaneusma minus, Lophodermium spp etc which were spread on the pine needle samples infected by DNB.

Acknowledgement

COST ACTION FP 1102 DIAROD

Ministry of Education and Science of Ukraine within joint Ukrainian-Lithuanian project No M/93-2018 (Biological control of forest invasive pathogens to preserve biodiversity in European forest ecosystems).