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Abstract: One of the most crucial variables in Agricultural Meteorology is Solar Radiation (Rs), 

although it is measured in a very limited number of weather stations due to its high cost in both 

installation and maintenance. Moreover, the quality of the data is usually low because of sensor 

failure and/or lack of calibration, which made scientists search for new approaches such as neural 

network models. Thus, the improvement of traditional solar radiation estimation models with 

minimum data availability is still needed for different purposes. In this work, several neural 

network models have been developed and assessed (Multilayer perceptron -MLP-, Support Vector 

Machines -SVM-, Extreme Learning Machine, Convolutional Neural Networks -CNN- and Long 

Short-Term Memory -LSTM-) with different temperature-based input variables configurations in 

Southern Spain (weather station located in the Mediterranean Sea coast). The performances have 

been analyzed using different statistical indices (Root Mean Square Error -RMSE-, Mean Bias Error 

-MBE-, correlation coefficient -R2- and Nash-Sutcliffe model efficiency coefficient -NSE-). 

Keywords: neural network; machine learning; solar radiation; Bayesian optimization 

 

1. Introduction 

During the last decades, an exponential increase in the Earth’s pollution has warned 

governments worldwide. Besides, the incredible high population growth over the climate change 

conditions accentuates the problem of energy needs and food guarantee supply, which has become 

one of the major challenges to our current society. One of the main measures to be adopted has been 

to increase the use of renewable energy, especially, the use of solar energy.  

In these terms, accurate estimations of solar radiation (Rs) are of high importance not only to 

estimate the available solar energy on a particular day but also to agronomical parameters such as 

the reference evapotranspiration (it determines the quantity of evaporated water in a hypothetical 

grass reference). Measuring solar radiation is more difficult than other meteorological parameters 

such as temperature or relative humidity, among others. In this sense, the number of weather stations 

collecting them is higher than those that collect solar radiation at a rate of 1:500 [1]. Besides, when 

several quality control procedures [2] are applied, solar radiation usually contains the major quantity 

of flagged data [2, 3].  
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In order to address this problem, several methods have been developed to estimate solar 

radiation: i) methods based on empirical relationships of different available meteorological 

parameters such as sunshine duration, air temperature, relative humidity, extraterrestrial radiation, 

cloud cover, among others [4-11], ii) estimations using data from nearby stations [7, 12, 13], iii) using 

satellite-based methods [14-19], iv) using Machine Learning (ML) models [16, 20-23], v) and others 

[24, 25]. ML models efficiently extract high dimensional and complex features from the different 

inputs in order to map them to obtain an output [26]; this is the reason why ML models have become 

one of the most commonly used methodologies to estimate solar radiation and other hydro-

meteorological parameters [27-30]. In this term, studied the capability of Support Vector Regression 

(SVR) was studied for a weather station in Iran [31], showing a better performance than the empirical 

models and the PSO-based model tested. [32] assessed the use of Artificial Neural Networks (ANN) 

in Turkey, obtaining better results using ANN than with other physical or statistical models. [23] 

implemented a Long Short-Term Memory (LSTM) and ANN model in Cape Verde with better 

performance of LSTM in terms of RMSE. [33] evaluated Convolutional Neural Networks (CNN) to 

forecast short-term solar radiation. [34] evaluated and a hybrid model with LSTM and CNN in 

Australia. 

However, the search for new neural network approaches to improve solar radiation estimates is 

not so common [35]. Thus, in this work, the main objectives are: i) the assessment of several ML 

models (Multilayer perceptron – MLP-, Support Vector Machines -SVM-, Extreme Learning Machine, 

Convolutional Neural Networks -CNN- and Long Short-Term Memory -LSTM-) to estimate solar 

radiation using limited climatic data (temperature and relative humidity of the air) using weather 

data from a coastal station in Southern Spain; ii) the assessment of Bayesian optimization to tune the 

different ML models 

2. Materials and methods  

2.1. Source of data 

This work was carried out in Almuñecar station (see figure 1), a coastal location situated in the 

semiarid region of Andalusia (latitude 36º 45’ 6’’ N, longitude 3º 40’ 44’’ W and 29 m above mean sea 

level). The dataset consists of intra-hourly temperature and relative humidity (recorded every 30 

minutes), and the daily extraterrestrial solar radiation (poner referencia). This weather station 

belongs to the Agronomic Information Network of Andalusia (RIA) and it can be downloaded at the 

following link https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController. 

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController
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Figure 1. Location of the weather station of Almuñecar (Southern Spain). 

The period of the dataset is a total of 18 years, from 2000 to 2018, being split to training (from 

2000 to 2013) and testing data (from 2014 to 2018). Besides, 20% of the training data is used as 

validation to find the fittest hyperparameters of the models. In Table 1, it can be seen the statistics 

maximum, mean and minimum values of the variables used in this work. 

Table 1. Statistics of maximum, mean, and minimum temperature, relative humidity, and solar radiation 

(Max: Maximum, Min: Minimum) 

 Temperature [ºC] Relative humidity 

[%] 

Solar radiation 

[MJ/m2d] 

Datasets Max Mean Min Max Mean Min Max Mean Min 

All 38.98 17.82 0.54 100.0 68.91 5.13 32.54 17.59 1.264 

Training 38.98 17.90 0.54 100.00 67.29 6.73 32.54 17.89 0.551 

Testing 37.72 17.59 1.26 100.00 73.17 7.29 30.67 17.98 0.73 

 

In order to estimate solar radiation, 3 configurations were assessed: 1) the use of 48 half-hourly 

temperature values of the day to estimate solar radiation, 2) the use of 48 half-hourly temperature, 

and 48 half-hourly relative humidity values, 3) the use of the second model and the daily 

extraterrestrial solar radiation (daily-basis). In the last case, LSTM could not be implemented due to 

its requirement of having inputs with the same time dimension. 

2.2. Multilayer perceptron (MLP) 

A multilayer perceptron (MLP) is a model based on the functionality of neurons in the human 

brain. It is composed of a determined number of fully interconnected neurons, which are distributed 

in different layers (the input, hidden, and output layer). The input layer and the output determine 

the input and output variables of the model, respectively, while the neurons are located along the 

hidden layers. The process of learning using the training dataset and a backpropagation function is 

blind to the user, which is the reason why it is called as ‘hidden’. The MLP structure and configuration 
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(number of neurons, number of hidden layers, activation, and optimization function) determines the 

final efficiency of the model. For further details, see [22]. 

2.3. Support Vector Regression (SVR) 

The concept of Support Vector Machine (SVM) for classification (it can be extrapolated to 

regression tasks) is based on the search of a hyperplane where the margins are maximized to separate 

two or more classes, which can be easily extrapolated to regression tasks, known as Support Vector 

Regression (SVR). Its use has been widely assessed in different hydrological and solar radiation 

estimations [36-38], having promising results due to its ability to work with a high-dimensional 

feature space (using a kernel function). For further details, the following articles can be revised [38, 

39]. 

2.4. Extreme Learning Machine (ELM) 

It was firstly proposed by [40] as a single hidden layer feedforward neural network (SLFNN) 

with a particular feature, where the weights and biases were randomly generated, while the output 

weights were analytically calculated. In consequence, the model did not need any iteration learning 

process, obtaining a very low computational cost model. For further details, see [17, 38, 41, 42]. 

2.5. Convolutional Neural Network (CNN) 

Convolutional Neural Network models are frequently used in image processing applications, 

although its use for 1D data had promising results in hydro-meteorological estimations [34, 43-45]. 

Its functionality is based on two main functions, the convolution, and the pooling. The convolution 

is a mathematical operation on two matrices (the input data and a kernel) producing a new one. On 

the other hand, the pooling operation reduces the dimensionality of the feature map using the 

maximum or average functions. For further details, the following works can be revised [34, 46]. 

2.6. Long Short-Term Memory (LSTM) 

Long Short-Term Memory models are based on Recurrent Neural Network (RNN) and it was 

first introduced by [47]. The main purposes of this approach were to model long-term dependencies 

and to address the vanishing gradient problem. As a result, the LSTM model contains three gates 

(input, output and forget) to control the information that goes into or output the memory cell over 

any arbitrary time. Figure 2 shows the structure of a memory cell. For further details, see [16, 30]. 



The 3rd International Electronic Conference on Atmospheric Sciences (ECAS 2020), 16–30 November 2020;  
Sciforum Electronic Conference Series, Vol. 3, 2020 

 

 

 

Figure 2. Structure of a LSTM memory cell. The ‘x’ represents an input, ‘h’ is a hidden state, ‘c’ is a 

cell state, sigmoid and tanh represent the respective activation function. 

2.7. Bayesian optimization 

ML models can be configured by parameters (called hyperparameters) which modify its 

architecture and have a great impact on its final efficiency. This optimization process from a 

hyperparameter space is usually known as tuning. A wrong configuration could lead to overfitting 

or underfitting results. A common practice is to select these hyperparameters by a trial and error 

technique. Although this technique could yield good results on some occasions, the results may lay 

on a local minimum. In these terms, [48] firstly propose the Bayesian optimization to address this 

problem. The main advantage of this method is that it considers past evaluations when choosing a 

new set of hyperparameters (from a pre-defined hyperparameter space), so the algorithm does not 

expend time on non-promising configurations.  

The different hyperparameter space for the ML models in this work was: 1) In MLP, the number 

of hidden layers (from 1 to 5), the number of neurons each layer (from 1 to 150), the activation function 

(relu, sigmoid and tanh), and the maximum number of training epochs (100); 2) In SVM, the kernel 

is chosen among linear, poly, rbf and sigmoid, the c parameter (from 0.01 to 10) and the epsilon (from 

0 to 10); 3) In ELM, the maximum number of neurons (250) and the activation function (linear, 

sigmoid and tanh); 4) In LSTM, the number of LSTM layers (from 1 to 3) the number of unit each 

layer (from 10 to 150), the number of hidden layer (from 1 to 2), the number of neurons of each layer 

(from 1 to 10), the maximum number of training epochs (100) and the activation function (relu, 

sigmoid and tanh); 5) In CNN, the number of CNN layers ( each layer is composed of Convolutional 

layers and pooling layer – from 1 to 2), the number convolutional layer per CNN layer (from 1 to 2), 

the number of filter (from 10 to 20), the number of kernels (from 1 to 5), the type of pooling layer 

(maximum or average), the size of pooling (from 1 to 3), the number of hidden layers (from 1 to 5), 

the number of hidden neurons (from 1 to 15), the maximum number of training epochs (100) and the 

activation function (relu, sigmoid and tanh). It is worth to mention that the bayesian optimization 

took 50 epochs to carry out this optimization problem, where 40 of them are randomly generated. 

2.8. Data standardization 
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Data standardization is a common data preprocessing operation for machine learning models, 

where the data is rescaled in order to have a standard deviation of 1 and a mean of 0. The purpose of 

data standardization is to avoid ML models to be influenced due to different input ranges. It can be 

expressed as equation 1. 

𝒙′ =
𝒙 − 𝝁

𝝈
 (1) 

where x’ is the standardized data, x represents the input data, µ is the mean value of the training 

dataset and σ represents the standard deviation of the training dataset. 

2.9. Statistical analysis 

All the performances were evaluated using the following parameters: Mean Bias Error (MBE), 

Root Mean Square Error (RMSE), and Nash-Sutcliffe model efficiency coefficient. The MBE, RMSE, 

and NSE are defined in equations 2, 3, and 4, respectively: 

𝑴𝑩𝑬 =
𝟏

𝒏
∑𝒙𝒊 − 𝒚𝒊

𝒏

𝒊=𝟏

 (2) 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑(𝒙𝒊 − 𝒚𝒊)𝟐
𝒏

𝒊=𝟏

 (3) 

𝑵𝑺𝑬 = 𝟏 −
∑ (𝒙𝒊 − 𝒚𝒊)

𝟐𝒏
𝒊=𝟏

∑ (𝒙𝒊 − 𝒙)𝟐
𝒏
𝒊=𝟏

 (4) 

3. Results 

In terms of MBE, RMSE and NSE, the results of estimating solar radiation in the weather station 

of Almuñecar using different input configurations and models are shown in table 2. Using the input 

configuration of 48 temperature values, CNN performed as the best model in RMSE (3.6864 MJ/m2 d) 

and NSE (0.7278), whereas the best MBE value (0.7238 MJ/m2d) was carried out by LSTM. In terms of 

NSE, the models MLP, ELM and LSTM performed below 0.7. All the model performances were below 

4.0 in terms of RMSE, although ELM (RMSE=3.9524 MJ/m2d) and MLP (RMSE = 3.9305 MJ/m2d) were 

very close to this value. Regarding MBE, the MLP, SVM and ELM models were above 1.0, although 

CNN and LSTM approaches obtained a better performance (0.8086 MJ/m2d and 0.7238 MJ/m2d, 

respectively). Concerning the input configuration of 48 temperature + 48 relative humidity values, 

SVM obtained the best performance in terms of RMSE (3.1836 MJ/m2d) and NSE (0.7969), although it 

was MLP the model that got the best MBE value (-0.0724 MJ/m2d) for all the configurations. 

Regarding RMSE and NSE, the configuration ranking was SVM, MLP, CNN, LSTM and ELM, in this 

order. It is worth mentioning that all the models outperformed their previous performance only using 

48 temperature values. The last configuration consisted of mixing intra-hourly (temperature and 

relative humidity) and daily data (extraterrestrial solar radiation) in a total of 97 inputs. The results 

outperformed all the previous RMSE and NSE values, where the best model was again SVM (RMSE 

= 2.5640 MJ/m2d and NSE = 0.8683), very close to CNN (RMSE = 2.6609 MJ/m2d and NSE=0.8581), 

ELM (RMSE = 2.7920 MJ/m2d and NSE = 0.84386) and MLP (RMSE = 2.8138 MJ/m2d and NSE = 0.8414), 

in this order. On the other hand, regarding MBE, the ranking changed to MLP (0.3521 MJ/m2d), ELM 

(0.3950 MJ/m2d), CNN (0.5344 MJ/m2d) and SVM (0.6915 MJ/m2d), in this order. 

Table 2. MBE, RMSE and NSE values for the different models and input configurations 
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Model Inputs MBE 

[MJ/m2d] 

RMSE 

[MJ/m2d] 

NSE 

MLP 

48 T, 1,1612 3,9305 0.6905 

48 T, 48 RH -0.0724 3.2998 0.7819 

48 T, 48 RH, Ra 0.3521 2.8138 0.8414 

SVM 

48 T, 1,1170 3.8300 0.7061 

48 T, 48 RH 0.6605 3.1836 0.7969 

48 T, 48 RH, Ra 0.6915 2.5640 0.8683 

ELM 

48 T, 1.0083 3.9524 0.6871 

48 T, 48 RH 0.3990 3.6036 0.7398 

48 T, 48 RH, Ra 0.3950 2.7920 0.8438 

CNN 

48 T, 0.8086 3.6864 0.7278 

48 T, 48 RH 0.5137 3.3683 0.7727 

48 T, 48 RH, Ra 0.5344 2.6609 0.8581 

LSTM 

48 T, 0.7238 3.8841 0.6978 

48 T, 48 RH 0.4045 3.3805 0.7711 

48 T, 48 RH, Ra - - - 

In figure 3 it is shown the estimations for the best (SVM using 48T,48RH and Ra) and the worst 

(ELM using 48T) configurations. 

 

a) 

 

b) 

Figure 3. Linear regression of a) SVM solar radiation estimates using 48T+48RH+Ra (best model with 

the best configuration) and b) ELM using 48T (worst model and configuration). 

4. Discussion 

In general, the results obtained after applying the different machine learning models proposed 

in this work, outperformed local-calibrated empirical solar radiation estimates for this station [11] in 

RMSE (3.61 MJ/,m2d using Hargreaves-Samani, 3.64 MJ/,m2d using Annandale, 3.58 MJ/,m2d using 

Bristow-Campbell and 3.67 MJ/,m2d using Allen), and also for different regions of Spain [49]. In terms 

of machine learning modelling, the performance of these models also outperformed RMSE values 

from a MLP approach using temperature, relative humidity and pressure as unique climatic input 

variables in Tucumán, Argentina [35]. On the other hand, modelling solar radiation with input 

climatic data such as sunshine duration and cloud cover among others, gave better estimations [31, 

37]. 
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It is worth mentioning that the use of daily and semi-hourly (30 minutes frame) input variables 

is recommended to improve solar radiation estimations when using machine learning models, so, the 

inputs does not require to have the same frame in order to be used. Besides, the performance of SVM 

is highly recommended to estimate solar radiation (very close to CNN and LSTM). Furthermore, the 

use of Bayesian optimization to tune hyperparameters is highly suggested instead of the commonly 

use of trial and error techniques. 

5. Conclusions 

Different machine learning models using several input configurations (only temperature and 

relative humidity of the air variables) have been implemented and evaluated in Almuñecar (coastal 

location in Southern Spain). Firstly, the dataset was split into two parts, the training (14 years) and 

the testing (4 years) sub-series, and different configurations, hyperparameters and models were 

evaluated. The results indicated that the use of Bayesian optimization and SVM are highly suggested 

because of its high efficiency and its low computational requirement cost, in places where there is no 

availability to collect. 

In future works, derived variables from temperature and relative humidity could be explored 

and their performance on regional models (the use of several stations to train, while a new one is 

taken to test). 
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