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Abstract: Deep learning techniques have been widely applied to Human Activity Recognition 

(HAR), but a specific challenge appears when HAR systems are trained and tested with different 

subjects. This paper describes and evaluates several techniques based on deep learning algorithms 

for adapting and selecting the training data used to generate a HAR system using accelerometer 

recordings. This paper proposes two alternatives: autoencoders and Generative Adversarial 

Networks (GANs). Both alternatives are based on deep neural networks including convolutional 

layers for feature extraction and fully-connected layers for classification. Fast Fourier Transform 

(FFT) is used as a transformation of acceleration data to provide an appropriate input data to the 

deep neural network. This study has used acceleration recordings from hand, chest and ankle 

sensors included in the PAMAP2 dataset. This is a public dataset including recordings from nine 

subjects while performing 12 activities such as walking, running, sitting, ascending stairs or ironing. 

The evaluation has been performed using a Leave-One-Subject-Out cross-validation: all recordings 

from a subject are used as testing subset and recordings from the rest subjects are used as training 

subset. The obtained results suggest that strategies using autoencoders to adapt training data to 

testing data improve some users’ performance. Moreover, training data selection algorithms with 

autoencoders provide significant improvements. The GAN approach, using the generator or 

discriminator module, also provides improvement in selection experiments. 
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1. Introduction 

Human Activity Recognition (HAR) using wearable sensors is a widely studied field [1,2] with 

a high number of applications such as physical activity classification [3,4], health [5,6] or biometrics 

[7]. In this field, daily life activities performed by humans are modelled by a system and could be 

recognized afterwards. However, each user presents specific and unique patterns that are not easily 

generalizable by a model. In this sense, adaptation approaches could adjust training data to testing 

domain to generate a model according to the target subject. Moreover, these approaches could also 

process testing data to generate a version adapted to a model generated with training data. Therefore, 

user adaptation techniques allow to modify user-independent models into user-dependent models 

to improve the HAR performance. 

In a recent previous work [8], the authors developed and evaluated three adaptation techniques 

for HAR: data augmentation, feature matching and confusion maximization. They concluded that 

performing unsupervised domain adaptation and domain generalization for HAR in wearing 
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diversity problem is a very complicated task and they proposed some practical considerations for 

unsupervised domain adaptation. One of these considerations is applying other unsupervised 

approaches. Another previous work [9] proposed a user adaptation based on Convolutional Neural 

Networks (CNNs). In this case, the authors included special user-dependent layers in the architecture 

that are estimated using a small amount of data from a specific user. 

The purpose of this work is presenting autoencoders and Generative Adversarial Networks 

(GANs) as two new adaptation techniques for HAR. 

2. Materials and Methods 

This section provides a description of the dataset, the signal processing, the deep learning 

adaptation approaches, and the cross-validation methodology used in this study. The workflow of 

the methodology consists of the extraction of activity recordings from different sensors of the dataset, 

the signal processing module to generate the spectra representation and the deep learning 

approaches. Once the signals are processed, they feed different deep learning architectures in parallel 

to analyze the performance of the proposed unsupervised adaptation and selection techniques: 

autoencoders and GANs. In this work, GNU Octave software is used for processing the signals of the 

dataset and Keras framework (written in Python) with Tensorflow backend for developing the deep 

learning approaches. 

2.1. Dataset 

For this work, we used the PAMAP2 dataset [10], which contains recordings of 12 different 

physical activities (lying, sitting, standing, walking, running, cycling, Nordic walking, ascending 

stairs, descending stairs, vacuum cleaning, ironing, and rope jumping), performed by nine subjects. 

These subjects wore three Inertial Measurement Units (IMUs) with tri-axial accelerometer, gyroscope, 

and magnetometer. These sensors were placed on the dominant hand, chest and ankle and they 

collected data sampling at 100 Hz. In this work, we used the accelerometer signals to model the 

physical activities. 

2.2. Signal Processing 

We implemented a signal processing module to generate windows of physical activity. First, we 

dealt with wireless data loss performing a linear interpolation of raw sensory data. Second, we used 

Hamming windowing to divide the data into 5.12-second windows (512 samples per window) 

separated by 1 s. We labelled each window using the mode of the classes included in the data 

sequence. Third, we computed the module of the Fast Fourier Transform (FFT) to transform data 

from time to frequency domain. We obtained a 256-point representation of the spectrum in the 0–50 

Hz frequency band. As physical activity concentrates its energy in low frequencies, we selected the 

first 128 points of the spectrum corresponding approximately to the 0–25 Hz frequency range. Figure 

1 represents the signal processing performed to the acceleration signals. 

 

Figure 1. Signal processing performed to the inertial signals. 

2.3. Deep Learning Adaptation Approaches 

As baseline system, we used a deep learning architecture with four convolutional layers and two 

max-pooling layers for learning relevant features from signals spectra and three fully-connected 
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layers for classifying activities, as shown in Figure 2. In this work, we used nine signals with 128 

samples of the spectrum as input of the architecture. 

 

Figure 2. Deep learning architecture used in this work. 

In this work, we included dropout layers (with a fraction of 0.3) after convolutional and fully-

connected layers to avoid overfitting. ReLU is the activation function in intermediate layers to reduce 

the impact of gradient vanishing effect and softmax is the activation function in the last layer to 

perform the classification task. We used the training set (using part of the training set for validation) 

to tune number of epochs (5) and batch_size (50). The optimizer was fixed to the root-mean-square 

propagation method [11] with a learning rate of 0.001. 

2.3.1. Autoencoders 

An autoencoder is a type of neural network which is trained to reproduce the input at the output 

through unsupervised learning. Autoencoders are composed of two main modules: encoder, which 

transforms input data to an advanced feature representation, and decoder, which decompresses this 

representation to the original data. In this work, autoencoders approach is used for adapting the 

training data to testing data and vice versa and for selecting the most appropriate training data. The 

autoencoder architecture used in this work has an encoder composed of three convolutional layers 

and a max-pooling layer and a decoder with three convolutional layers and an up-sampling layer. 

The autoencoder uses 32 kernels with (1,5) size for convolutional layers and a pooling kernel of (1,2). 

In the adaptation approach, training data is adapted to the testing domain or vice versa. The 

procedure to adapt training data to testing data is as follows. First, the autoencoder is trained using 

training data to capture the main features of the training subjects. Second, the decoder module of the 

autoencoder is replaced by a new decoder and the encoder module is configured to avoid training 

the encoder part. Third, the new decoder is trained using testing data. After this adaptation, we have 

generated an autoencoder able to transform data from training domain to testing domain (train2test 

autoencoder). The autoencoder was trained using 10 epochs and a root-mean-square optimizer with 

a learning rate of 0.001. This procedure could be also performed to generate an autoencoder able to 

transform data from testing domain to training domain (test2train autoencoder). After processing 

original training data with the train2test autoencoder, we use the baseline deep learning architecture to 

model and classify the physical activities. Figure 3 represents the training to testing adaptation process 

using autoencoders. 

 

Figure 3. Training to testing adaptation using autoencoders. 

In the selection approach, we compute the Root Mean Square (RMS) error between original 

training data and adapted training data obtained in the adaptation approach. We remove the 

windows from the original training data where the adapted data is greater than a threshold based on 

the RMS mean and standard deviation of the adapted training data. The following equation 

represents the computation of this threshold: 

value RMS−adapted data >= µ RMS−adapted data + γ * σ RMS−adapted data (1) 
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where γ is a double value optimized during experimentation (γ = 2.75). After this selection of the 

most appropriate training data, we use the baseline deep learning architecture to model and classify 

the physical activities. 

2.3.2. Generative Adversarial Networks 

A GAN is a system where two neural network modules compete in a game where one’s victory 

is another’s loss. These two modules are called generator and discriminator. The generator module 

uses latent space and tries to generate samples close to ones of the true distribution. The discriminator 

tries to distinguish candidates created by the generator module from real ones. Both modules are 

trained through backpropagation so that the generator produces better data, while the discriminator 

becomes more skilled at detecting fake data. In this work, the generator module has the same 

architecture than the autoencoder and the decoder has the same architecture than the baseline system. 

In the adaptation approach, training data is adapted to the testing domain or vice versa. In this 

adaptation procedure, GAN architecture is trained to transform training data (fake samples) into data 

as similar as possible to testing data (real samples). First, the discriminator is trained with a random 

subset of testing data, fixing its output to one because these are real samples. Second, a random subset 

of training data is processed through the generator and its output is processed through the 

discriminator, fixing its output to zero because these are fake examples. Third, the GAN is configured 

to avoid training the discriminator part and the generator part is trained with training data, fixing its 

output to one because we want that the generator cheats the discriminator with generated examples 

that are similar to the testing data. After processing original training data with the generator, we use 

the baseline deep learning architecture to model and classify the physical activities. Figure 4 represents 

the training to testing adaptation process using GANs. 

 

Figure 4. Training to testing adaptation using GANs. 

Regarding selection with GANs, it is possible to use generator or discriminator to select the most 

appropriate training data. 

In the selection approach with the generator, we compute the RMS error between original 

training data and adapted training data obtained in the adaptation approach. After that, we perform 

a similar selection procedure than in autoencoder selection approach with Equation (1), fixing γ to 

3.5 in this case. 

In the selection approach with the discriminator, once the GAN architecture is trained to adapt 

training data to testing data, we predict the capability of training data to impersonate testing data. 

We process the training data through the discriminator to obtain this measure between 0 and 1. After 

that, we remove the windows from the original training data where the output of the discriminator 

is lower than a threshold based on the mean and standard deviation of the discriminator output. The 

following equation represents the computation of this threshold: 

value discriminator output < µ  discriminator output − γ * σ discriminator output (2) 

where γ is a double value optimized during experimentation (γ = 2.5). 
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2.4. Leave-One-Subject-Out Cross-Validation 

In this study, we used a Leave-One-Subject-Out (LOSO) Cross-Validation (CV). This evaluation 

technique allows to test a system with data from a subject that has not seen during training process. 

We performed round-robin strategy, training the system with data from eight out of nine subjects 

and testing the system with data from the remaining one. We used a 10% of the training data to 

validate the system. This configuration has been repeated nine times and the results in this work are 

average values obtained throughout the ninefold cross validation procedure. This way, recordings 

from the same subject did not appear in training and testing subsets at the same experiment. This 

strategy supports the need of adapting training and testing domains because the system is tested with 

data from a subject that is not included during training process. 

3. Results 

Table 1 summarizes the main results of this paper. Activity classification accuracy and 

confidence intervals (CI) using a 95% of significance level are included in the table. Accuracy is the 

ratio between the number of correctly classified examples and the number of total examples. For each 

adaptation experiment, the significant improvement is highlighted in green, the significant 

deterioration is highlighted in red and no color is included when there is no statistical difference 

between results. As shown in the table, the adaptation approaches reach higher number of significant 

improvements than deteriorations. It could be observed that selection approaches using 

autoencoders and using GAN generator reach a general significant improvement in accuracy. 

Moreover, other approaches such as adapting training data to testing data with autoencoders and 

selection of training data using GAN discriminator improve the performance for some users. 

Table 1. Activity classification accuracy of baseline and adaptation approaches. 

Experiment 
Subject 

101 102 103 104 105 106 107 108 109 All 

Baseline 
Acc (%) 86.34 87.93 85.91 89.76 87.69 85.15 92.04 87.61 96.88 87.85 

CI (±%) 1.35 1.24 1.63 1.23 1.23 1.39 1.10 1.26 4.26 0.46 

Adapt. 

Auto. 

Acc (%) 86.26 82.88 89.23 93.35 87.36 86.23 91.91 90.62 93.75 88.36 

CI (±%) 1.35 1.44 1.45 1.02 1.25 1.35 1.11 1.12 5.93 0.45 

Select. 

Auto. 

Acc (%) 86.50 87.17 88.95 91.45 88.06 85.83 92.65 92.30 87.50 89.06 

CI (±%) 1.34 1.28 1.47 1.14 1.22 1.37 1.06 1.02 8.10 0.44 

Select. 

GAN 

Gen. 

Acc (%) 85.58 85.84 90.38 90.15 88.39 88.04 92.04 91.69 98.44 88.94 

CI (±%) 1.38 1.33 1.38 1.21 1.20 1.27 1.10 1.06 3.04 0.44 

Select. 

GAN 

Discr. 

Acc (%) 87.46 88.99 87.57 84.45 89.75 86.79 93.08 90.62 96.88 88.68 

CI (±%) 1.30 1.19 1.55 1.48 1.14 1.33 1.03 1.12 4.26 0.45 

4. Discussion and Conclusions 

The adaptation techniques proposed in this work allow adapting the training data to testing data 

and vice versa and selecting the most appropriate training data once adaptation procedure is 

completed. Results suggest that performing adaptation for HAR is a very difficult task. However, 

selection approaches could remove from training data the examples that differ from testing domain 

and improve the general performance of the system. As shown in the results, there exist more subjects 

than significantly improve their activity classification accuracy than subjects than significantly 

deteriorate it. This fact implies that adaptation techniques for HAR could benefit individual 

classification performance or both individual and total classification performances when adapting 

training data to testing data. 

The unsupervised learning adaptation approaches described in this work could pave the way 

for future research on domain adaptation in HAR. It would be interesting to focus the research on 

these techniques to achieve fruitful HAR adaptation systems. 
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