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Abstract: Agriculture is the backbone of each and every country in the world. In India, most of the 

rural population still depends on agriculture. The agricultural sector provides major employment 

in rural areas. Further, it contributes a significant amount to India’s Gross Domestic Product (GDP). 

So, protecting and enhancing the agricultural sector helps in developing India’s economy. In this 

work, a real-time decision support system integrated with camera sensor module is designed and 

developed for identification of plant disease. Further, the performance of three machine learning 

algorithm such as Extreme Learning Machine (ELM), Support Vector Machine (SVM) with linear 

and polynomial kernels is analyzed. Results demonstrate that the performance of extreme learning 

machine is better when compared to the adopted support vector machine classifier. Also, it is 

observed that the sensitivity of support vector machine with polynomial kernel is better when 

compared to the other classifiers. This work appears to be of high social relevance since the 

developed real-time hardware is capable of detecting different plant diseases. 
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1. Introduction 

Plants are considered as a major resource for oxygen supply whereas they intake carbon dioxide 

and releases oxygen during day time for the photosynthesis process [1]. Plants are considered as the 

major supplier for food to all terrestrial organisms, including Human Beings. Plants not only provide 

food, but also other products like wood, oil, timber, fiber, medicine, dyes, etc. Plants transport an 

enormous amount of water from the soil to the atmosphere through transpiration [2]. 

In recent years, due to the rise in Global warming and deforestation, many plant species are on 

the verge of extinction. Also, the rise in pollution and industrialization decreased the plant 

population. Along with this, plant diseases also play a major role in their extinction. Anthracnose is 

a type of disease that develops dark, water-soaked lesions on stems, leaves, or fruit [3]. 

Plant diseases depend on Climatic conditions too. For instance, Reddish—purple leaf spots on 

the older leaves of the Ixora plant is due to entomosporium leaf spot fungus. Further, this disease is 

very dangerous which has active growth in cool and wet weather conditions. The various other 
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diseases include Rust, Kole Roga, Yellow leaf disease, Leaf Rot, Leaf Curl, Angular Leaf Spot, Leaf 

Spot, Late Blight, Bacteria Wilt etc. affects the growth of the plants [4]. 

Nowadays several researchers have developed automatic recognition and identification 

algorithms for the classification of diseased plants [5–8]. Singh et al. (2019) [3] have developed an 

automated model for the identification of plant leaves diseases by implementing Computer Vision 

(CV), Machine Learning (ML), and Artificial Intelligence (AI). Further, the authors have trained their 

program code with 1070 images of Mango tree leaves with the help of TensorFlow. 

Jaisakthi et al. (2019) [9] have proposed an automated identification system for detecting 

grapevine disease using image processing and machine learning algorithms such as Support Vector 

Machine (SVM), Random Forest and AdaBoost classifiers. Further, the authors have segmented 

leaves as healthy, black-rot, esca and leaf blight. Also, the authors have concluded that the overall 

accuracy of SVM is higher compared to Random Forest and AdaBoost classifiers. 

Maniyath et al. (2018) [10] have utilized Random Forest classifier for classification of healthy and 

diseased leaves from the data set and incorporated Histogram of an Oriented Gradient (HOG) for 

extracting features of an image. Further, the authors have compared Random Forest classifier with 

various machine learning models such as Logistic regression, Support vector machine etc. 

The objective of this work is to design and develop real-time decision sup-port hardware for the 

identification of healthy leaf and diseased leaf and to analyze the performance of the adopted 

machine learning classifiers such as extreme learning machine and support vector machine with 

linear and polynomial kernels. 

2. Materials and Methods 

2.1. Proposed System 

Figure 1 shows the overall block diagram of the proposed system. In this work, a compact 

decision support system is designed and developed using Raspberry PI (System onboard hardware) 

to classify different plants, plants with and without diseases. 

 

Figure 1. Overall block diagram of a real-time decision support system. 

The plant data for different plants with and without diseases have been utilized to train the 

classifier model [11]. During the training phase, the plant images from the database are taken as input 

and the informative features using Hu moments and Haralick texture features are extracted from the 

image. Further, the extracted features are given to the two different classification algorithms such as 

Extreme Learning Machine (ELM) and Support Vector Machine (SVM) with Linear and Polynomial 

kernel (order = 8). Also, the knowledge model is created at the end of the training phase. During the 

testing phase, the real-time plant image is acquired using Rasp-berry PI camera and is given to the 

feature extraction methods. Further, the classification algorithm classifies the plant with and without 

different diseases using previously acquired knowledge which acts as a decision support to the user. 

2.2. Extraction of Informative Features 
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Hu moments: Hu moments also called Hu Moment Invariants consists of a set of 7 numbers that 

are determined using central moments that are invariant to image transformation. The initial 6 

moments are invariant to rotation, reflection, translation, scale, while the seventh-moment sign varies 

with image transformation. Hu moments help to describe the outline of a particular leaf. Hu moments 

are determined over a single channel. The transformation consists of RGB to Grayscale calculations 

and subsequently to Hu moments [12]. 

Haralick texture: Haralick texture quantifies the texture of the leaf. Normally, the texture of 

healthy leaves and diseased leaves varies. To distinguish between the two, Haralick texture is used. 

Texture feature calculations use the contents of Gray Level Co-occurrence Matrix (GLCM) to give a 

measure of variation in intensity at the pixel of interest. GLCM is a square matrix and can be 

calculated at any angle (direction) and at any offset [13]. 

2.3. Machine Learning Algorithms 

In this work, two different machine learning algorithms namely Support Vector Ma-chine and 

Extreme Learning Machine are utilized as a classifier to classify healthy and diseased leaves. Further, 

the SVM with two different kernels namely Linear and Polynomial kernel is adopted. 

Support Vector Machine Classifier: Support Vector Machine Classification (SVM) is a binary 

classifier which falls under machine learning. It is a supervised learning model that analyzes data for 

classification and regression analysis. 

As the proposed research is conducted based on the two-class binary classification problem, the 

most efficient hyperplane is selected by the SVM classifier, which divides all input samples into two 

classes. The effective hyperplane is considered as a classifier line and the sample inputs which are 

nearest to the classification line are called support vector. The expression for the training set of the 

SVM classifier is [14,15]: 

1 1 2 2{( , ), ( , ),....., ( , )}, , { 1,1}n n nX y z y z x y y S z     (1) 

The classification line is derived as: 

( ) ( . )X n wn a   (2) 

where z represents the class label of X and n represents the sample Vector represented to a high 

dimensional space. With the help of w and a parameters, the equation of classification line is obtained. 

Further, the SVM classifier has 4 general kernel functions such as Linear, Polynomial, Gaussian, 

Hyperbolic tangent kernel whereas in this work, the Linear and polynomial is adopted [16]: 

Linear: It is used when the data is linearly separated. 

( , ) Tk x y x y  (3) 

Polynomial: It allows learning for non-linear model which requires all the training data to be 

normalized. 

( , ) ( )T dk x y x y  (4) 

where x, y are vectors in input space and the parameters required are slope α and polynomial degree 

d. 

In this work, the SVM based supervised machine learning classifier with two different kernels 

are trained using 200 train images of 3 different kinds of leaves. After the training process, the test 

images from the Raspberry PI camera are utilized to analyze the performance of the selected 

classifiers. The two different performance parameters, namely accuracy, and sensitivity, are 

calculated for SVM classifier with two different kernels such as Linear, and Polynomial. 

Extreme Learning Machine (ELM) Classifier: Extreme Learning Machine (ELM) is a novel 

training algorithm used to train single hidden layer feedforward neural network (SLFNN) [17]. The 

computational speed of the ELM is high when compared to other traditional learning algorithms. 

ELM is utilized in all classification and regression problems. The ELM is derived by Shi et al. (2013) 

[18] 
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where the hidden nodes are referred to as h, the weight vector or connection link between the input 

node to the ith hidden node is wi, the weight vector or connection link between the ith hidden node 

to the output node is αi, and the threshold for the ith hidden node is βi. 

3. Results and Discussion 

In this work, 200 training images of each three different leaves are given to machine learning 

algorithms. Figure 2 shows a typical three different plant leaves such as Nerium oleander, Ixora 

coccinea and Sweet-scented geranium. 

  
(a) (b) 

 
(c) 

Figure 2. A typical plant leaves (a) Nerium oleander, (b) Ixora coccinea and (c) Sweet-scented 

geranium. 

Figure 3 shows the accuracy of the three different classifiers such as SVM with Linear kernel 

(LSVM), SVM with Polynomial kernel (PSVM) and Extreme Learning Machine (ELM). Further, it is 

observed that the accuracy of extreme learning machine is higher when compared to the other two 

classifiers. 
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Figure 3. Accuracy of the different classifiers. 

Figure 4 shows the sensitivity of the three different classifiers such as SVM with Linear kernel 

(LSVM), SVM with Polynomial kernel (PSVM) and Extreme Learning Machine (ELM). It is seen that 

the sensitivity of the extreme learning machine is higher when compared to the other two classifiers. 

Also, the sensitivity of PSVM is better and closer to the ELM classifier. Since the performance of 

extreme learning machine is better when compared to other two adopted classifiers, the ELM is 

utilized for decision support for real-time hardware. Figure 5 shows the decision support output of 

the proposed real-time hardware. The image of the real-time leaf is acquired using Raspberry PI 

camera and is given as a test image to the classification algorithm. Also, it is demonstrated that the 

proposed decision support system with ELM classifier is good at classifying healthy and diseased 

leaves in real-time. 

 

Figure 4. Sensitivity of the different classifiers. 
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Figure 5. Decision support output of the proposed real-time hardware. 

4. Conclusions 

In this work, the performance of three machine learning algorithms such as extreme learning 

machine, support vector machine with linear and polynomial kernels were analyzed. Further, a real-

time decision support system using extreme learning machine was designed and developed using 

Raspberry PI hardware. Results demonstrate that the performance parameters namely accuracy and 

sensitivity of extreme learning machine is 95% and is higher when compared to the other adopted 

classifiers. Also, it is observed that the developed real-time hardware with ELM classifier is highly 

capable of detecting three different plant diseases and can be extended to detect many more plant 

diseases by training it with wide range of train datasets. 
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