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Abstract: The control scheme in a myoelectric prosthesis includes a pattern recognition section 

whose task is to decode an input signal, and produce a respective actuation signal, to drive the 

motors in the prosthesis limb towards the completion of the user’s intended gesture motion. The 

pattern recognition architecture works with a classifier which is typically trained and calibrated 

offline with a supervised learning framework. This method involves the training of classifiers which 

form part of the pattern recognition scheme, but also induces additional and often undesired lead 

time in the prosthesis design phase. In this study, a 3-phase identification framework is formulated 

to design a control architecture capable of self-learning patterns from bio-signal inputs from 

electromyography (neuromuscular) and electroencephalography (brain wave) biosensors, for a 

transhumeral amputee case study. The results show that the designed self-learning framework can 

help reduce lead time in prosthesis control interface customization, and can also be extended as an 

adaptive control scheme to minimize the performance degradation of the prosthesis controller. 

Keywords: control system; prosthesis control; transhumeral; biosensors; cybernetics; brain-machine 

interface; intelligent systems; unsupervised Learning; EMG; EEG 

 

1. Introduction 

Bionic prosthesis arms, also known as a myoelectric prosthesis, are a kind of functional based 

prosthesis arm which have been seen to be the closest alternative to a biological limb [1]. The 

myoelectric prosthesis works with a control system whose role is, given a physiological signal 

acquired by a biosensor, to decode a user motion intent and from this apply an actuation signal to 

get the myoelectric limb to perform a selected gesture motion [1]. As per Fougner et al. [2], a number 

of control schemes have been trialed for the control of the myoelectric limb, and the pattern 

recognition scheme has been viewed as the favored control method due to the level of intuitiveness 

which it affords its users. An Artificial Intelligence classifier is typically employed as part of this 

exercise and is usually calibrated using the favored supervised learning framework, which is based 

on an iterative optimization sequence where an algorithm learns the best internal model 

configuration that allows it to best identify labelled examples of the dataset which it is being 

calibrated for [3]. The shortcomings of the supervised learning framework include the lag-time 

induced by the reliance on an ‘expert in loop’ for tasks such as labelling of the training set, which 

requires more expert knowledge depending on the format and size of the training data, in addition 

to associated computational training times [3]. 
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As part of efforts towards overcoming this limitation posed by the classifier learning framework, 

in this study we propose an automated 3-phase identification method which is used towards the 

design of a self-learning prosthesis controller. Another key issue faced by myoelectric prosthesis 

users is the classifier degradation, and thus inaccurate gesture intent decoding due to a range of 

factors such as electrode shifts, changes in stump, sensor-skin impedance variation and sensor drifts 

[4]. This issue forms part of what has caused myoelectric prosthesis users to begin to abandon their 

prosthesis limbs as per reported surveys [4]. It is foreseen that the self-learning control framework, if 

applied at various intervals, can be used to re-calibrate the prosthesis controller when necessary, and 

help form an adaptive prosthesis controller, thereby mitigating the classifier degradation problem. 

Thus, in this study we investigate the design of a multi-stage self-learning prosthesis controller 

capable of functioning in an automated fashion and reducing downtime associated with the 

calibration of the controller, while serving as an adaptive strategy to re-tune the classifier within the 

controller to minimize classifier degradation. 

2. Materials and Methods 

This paper utilizes the dataset acquired by Li et al. [5] using EMG and EEG sensors. This section 

gives a brief overview of the bio-sensors used, and the data collection procedure, followed by the 

designed prosthesis controller framework [5]. 

2.1. Biosensors 

2.1.1. Electromyography (EMG) 

EMG signals are superimposed electrical signal representations of action potentials from motor 

neurons which are dependent on the physiological and anatomical properties of an individual [3,5]. 

Using dipole theory, an EMG signal can be mathematically modelled as a continuous extracellular 

action potential from a multiple source dipole as seen in equation 1 [6]: 

𝜙𝑒(𝑡) = −
𝑎2 .𝜎𝑖
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where 𝜙𝑒  is the time varying extracellular potential, 𝜎𝑒  is the conductivity of the extracellular 

medium, 𝜎𝑖 is the intracellular conductivity, 𝑎 is the radius of the fiber, 𝑡 is time, 𝑟 is the distance 

of the source excitation to the recording sensor, 𝑥 is a point in space within the fiber element, 𝑎𝑥
− is 

the length of the anatomical fiber and 
∂𝐼𝐴𝑃

∂𝑥
 is the dipole strength at a point along the fiber axis. 

‑ EMG Sensors 

The EMG instrumentation used for data acquisition by Li et al. [5] was the Refa 128 high-density 

electrodes by TMS International BV, Netherlands, with 32 electrode channels [3]. The acquisition 

electronics comprised of a bandpass filter in the 10-500Hz frequency range, 24bit resolution and a 

sample rate of 1024Hz [3]. 

2.1.2. Electroencephalography (EEG) 

The passive variant of EEG which was used for the data collection by Li et al. [5], is based on the 

recording of electrical signals emanating from the brain using surface electrodes, where the recorded 

EEG signals represent brain-based potential signals from various regions of activations [7]. On a 

closer scale, these EEG signals occur from the neuronal firing of billions of pyramid-like cells within 

the skull of a human being [7]. Using a combination of dipole theory, and assuming the forward EEG 

problem, a measured potential of an EEG signal can be formulated as follows [7]: 

For a multilayer head model with concentric spheres L whose radius spans 0<r1<r2…<rL with 

anisotropic conductivities 𝜎1, … . 𝜎𝐿, the electric potential u measured at point 𝑥 can be expressed as 

seen in equation 2 [7]: 
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where s is the dipole source located within proximity of sphere of radius rs of moment q, boundary 

sphere rL, 𝜎𝐿  anisotropic conductivity within boundary sub-domain of L, 𝑓𝑛  is the EEG 

measurement for nth element in the infinite set, ∝ is the angle between the point S and measurement 

point x, 𝛾 is the angle between two planar vectors pairs of S & q and S & x, 𝑃𝑛 and 𝑃𝑛
1 represent 

the Legendre polynomial coefficient of the series. 

‑ EEG Sensors 

Li et al. [5] used the 64 sensors EEG channel EasyCap, Herrsching, Germany, with the Al-AgCl 

electrodes and Neuroscan system version 4.3. The EEG signals were band passed using filters 

designed with frequency range of 0.05-100Hz and acquired at a sampling rate of 1024Hz [5]. 

2.2. Data Collection and Demographic Information 

The dataset acquired by Li et al. [5] involved a simultaneous acquisition of EMG and EEG from 

amputated subjects whom had lost their limb due to trauma. A single amputee’s data set has been 

used for the work presented as part of this paper. The transhumeral amputee subject was 49 years 

old with a left side amputation, three years post amputation due to trauma, and a stump length 

(measured from shoulder blade downwards) of 20cm. Ethical approval was granted for the study by 

the Institutional Review Board of Sheenzhen Institutes of Advanced Technology, with a unique 

reference number of SIAT-IRB-150515-H0077. 

The Hand Open (HO), Hand Close (HC) gestures, which represent two of the key gesture sets 

relevant for a functional prosthesis, are the gestures used for part of the prosthesis control exercises 

presented in this work [5]. A total of 32 EMG electrode channels were distributed around the stump 

and deltoid of the subject, while the EEG cap comprising of 64 electrodes was worn on his head. A 

sum of 10 repetitions was done for each gesture set with a break between acquisition runs to minimize 

the effect of fatigue on the data collection process, an image of the acquisition setup can be seen in 

Figure 1. 

 
 

Figure 1. A picture showing a subject during the data collection session [5]. 

2.3. Self-Learning Controller Framework 

This section describes the steps and archtecture of the self-learning controller which, after the 

acquisition of a biosignal, includes separate electrode channel selection, and the automated learning 

consisting of Feature Extraction, Signal Fusion, Dimenality Redution, Labelling and Motion Intent 

Classification. 

‑ Electrode Channel Selection: the electrode channel selection was carried out separately as part 

of the framework being described in this paper. This aspect was done by Li et al. [5], and 

involved the use of the Sequential Forward Selection (SFS) algorithm which is a variant of a 

greedy search algorithm, as can be seen in Equation (3): 

EEG Skull Cap 

EMG Electrode 

Channels on Stump 

of subject 
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Acc(𝑆𝑘 + 𝑥∗) = argmax Acc(𝑆𝑘 + 𝑥𝑗
∗), k∈{1,2,….n}  (3) 

where Acc represents classification accuracy, 𝑆𝑘 is a selected electrode,  𝑥𝑗
∗ is an electrode channel 

and jth element in the set k. Using this framework, the 10 electrodes from both the EMG and EEG 

biosensors were identified by Li et al. [5]. These electrodes formed the signal channels used for the 

signal processing stage and represent a first stage dimensionality reduction process. 

2.3.1. Feature Extraction and Feature Vector Fusion 

A total of four Time-Domain features were extracted from the signals of both the EMG and EEG 

as proposed by Li et al., as described in Equations (4)–(7) [3,5]: 

Mean absolute value (MAV) = 
1

𝑁
∑ |𝑥𝑛|𝑁

𝑛=1   (4) 

where N = number of samples, 𝑥𝑛 is the nth sample of the EMG signal. 

Waveform Length (WL) = ∑ |𝑥𝑛 − 𝑥𝑛−1|𝑁
𝑛=2   (5) 

Zero Crossing (ZC) = ∑ 𝑠𝑔𝑛(−𝑥𝑖𝑥𝑖+1)𝑁
𝑛=1  𝑆𝑔𝑛(𝑥) = {

1, 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

Number of slope sign changes (SSC) = ∑ 𝑓[[(𝑥𝑛 − 𝑥𝑛−1). (𝑥𝑛 − 𝑥𝑛+1)]𝑁
𝑛=2 ] 𝑆𝑔𝑛(𝑥) = {

1, 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

A threshold of 0.1mV was used for the calculations of the ZC and SSC features, and following 

the extraction of the features, respective feature vectors are formed for both the EMG and EEG, and 

then fused together to construct an EMG-EEG feature vector. The 10 repetitions from 10 SFS 

electrodes for the two gestures performed, followed by the four features extracted, amounted to a 

total of 800 data points used for the classification process in the case of the EMG/EEG only, and 1600 

for the fused EMG-EEG biosensing modules. 

2.3.2. Dimensionality Reduction 

Dimensionality reduction is a useful approach that involves the reduction of the size of the 

feature vector, which in turn helps in minimizing the computation time and in removing noise and 

redundancies from the dataset [8]. The Principal Component Analysis (PCA) is a linear 

dimensionality reduction technique used to reduce the dimension of data while preserving its 

structure and minimizing loss of information, predominantly by creating new variables that 

maximize variance [8]. This approach obtains a number of Principal Components (PCs) by solving 

an eigenvector and eigenvalue problem without the requirement of prior information or class labels, 

thus making it an unsupervised data analysis method [9]. 

Using the computationally efficient covariance method, the PCA can be calculated as follows, 

assuming a data vector 𝑋 = 𝑥1, 𝑥2 … . . 𝑥𝑁: 

‑ Mean Centering of the data to produce a standardized vector B 

‑ Calculation of the covariance matrix 𝑪 =
1

𝑛−1
𝑩 ∗ 𝑩 

Where 𝐶 is the covariance matrix, * is the conjugate transpose operator, and 𝑛 − 1 is used in 

this case due to the Bessel’s correction factor used to negate the effect of bias on sample variance. 

‑ Calculation of the eigenvalues and eigenvectors of the covariance matrix which produces a 

diagonal of the covariance matrix 𝑪 , which can be formulated as 𝑽−1𝑪𝑽 = 𝑫 , where 𝑫 

represents the eigenvalues of the covariance matrix and 𝑽  is the matrix of the right-side 

eigenvalues 

‑ Arrange eigenvalues and eigenvectors in descending order and calculate the energy 𝐸𝑗 =

∑ 𝐷𝑘𝑘
𝑁
𝑘=1  for all columns in the feature vector 

‑ Truncate the eigenvectors whilst ensuring that 90% of the cumulative energy is preserved, and 

project the feature vector in a new basis 𝑮 = 𝑩 ∗ 𝑾, where the columns in G represent PC’s 

1,2, … . 𝑛. 
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In this work the first two PC’s were selected as they accounted for 95% of the information in the 

data, thus allowing a dimensionality reduction from 4 × 200 to 2 × 200 for the EMG-Only and EEG-

Only, while most notably dropping the dimension from 8 × 200 to 2 × 200 for the case of the signal 

fusion of EMG-EEG. 

2.3.3. Iterative Clustering and Motion Intent Classification 

The final stage involves the labelling and forming of clusters as a means of distinguishing 

between various phantom motion intent signals used to actuate respective hand gestures in the 

prosthesis limb. For this section, two unsupervised classification methods were used as follows: 

‑ K-Means: is a form of iterative clustering algorithm where the data is segmented into K different 

classes using a centroid mean and Euclidean distance metric. During iterations, the algorithm 

aims to maximize the distance between classes, and sorts data points into their respective classes 

by their proximity to assigned clusters within Euclidean space [10]. This approach uses the 

Expectation-Maximization (E-M) framework assuming a random initialization: the E step 

involves the assignments of clusters using ∑ ∑ 𝑎𝑟𝑔𝑚𝑖𝑛𝑗 ||𝑥𝑖 − 𝜇𝑘||
2

 𝐾
𝑘=1

𝑚
𝑖=1 where 𝑥𝑖  is a data 

point and 𝜇𝑘  is the centroid mean; while the M step involves the recalculation of the class 

centroid using the expression 𝜇𝑘 =
∑ 𝑤𝑖𝑘𝑥𝑖𝑚

𝑖=1

∑ 𝑤𝑖𝑘
𝑚
𝑖=1

 where 𝑤𝑖𝑘  is a binary metric used to indicate 

whether or not a data point belongs in a certain class [10]. Due to the random cluster centroid 

initialization, running the K-Means algorithm at different times could yield different results, 

thus a model selection phase has been included where the model selected was that which 

produced the lowest error for the performance index J defined in equation 8 after five separate 

runs of the algorithm. The number of clusters was defined a priori from the number of gesture 

motions performed. 

𝐽 = |(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 ∗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) − ∑ 𝑥𝑘
𝑖 |𝑚

𝑖=1   
(8) 

where 𝑥𝑘
𝑖  is a data point assigned to a specific class k 

‑ Gaussian Mixture Model (GMM): working with a Gaussian assumption, the GMM is a 

probabilistic framework which, in a sense, is an extension of the K-Means algorithm, with the 

GMM providing flexibility between a hard clustering option which sorts the data into a solitary 

class while the soft clustering allows for data to belong to more than one class [11]. The GMM 

model can be described and parametrized as containing a mixture proportion, mean and co-

variance. A multi-dimensional model of the GMM framework can be seen in Equations (9) and 

(10): 

𝑝(�⃗�) = ∑ 𝜋𝑖𝑁(�⃗�|µ𝑖⃗⃗⃗⃗ , ∑𝑖)

𝐾

𝑖=1

 (9) 

𝑁(𝑥|µ𝑖 , ∑𝑖) =  
1

√(2𝜋)𝐾|∑𝑖|
exp(−

1

2
(�⃗� − µ𝑖⃗⃗⃗⃗ )𝑇 ∑𝑖 − 1(�⃗� −  µ⃗⃗𝑖))  (10) 

∑ 𝜋𝑖 = 1 

𝐾

𝑖=1

 (11) 

where �⃗� is a datapoint, µ𝑖  is the mean, ∑𝑖 is the covariance, 𝑁 symbolizes a Gaussian distribution, 

k is the number of mixture components, 𝜋𝑖 are the various component weights with a normalization 

constraint as shown in equation 11 to ensure the total probability sums up to 1. The learning model 

for the GMM is also based on the E-M framework where the model parameters are estimated 

iteratively with the maximum likelihood estimation approach [11]. The hard clustering option was 

utilized in this work and, as with the K-Means algorithm, the number of clusters and mixture 

components were defined a priori, and included a model selection phase as mentioned with the 
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performance index defined in equation 8 used for the selection process. The algorithm was run with 

a full covariance option and converged within 15 iterations on average. 

A diagrammatic flow of the self-learning control framework can be seen in Figure 2. 

 

Figure 2. A flow diagram showing the various aspects of the 3-phase self-learning prosthesis control 

procedure, and mapping out procedure of going from motion intent (raw bio-signal) to decision (arm 

motion) [5]. 

3. Results 

3.1. Intent Decoding 

As a way of testing the intent decoding capability of models, a separate unseen dataset of the 

feature vector after the PCA transformation was put aside, used to test the models and referred to as 

the Hold-Out dataset. The results of the various cluster assignment runs from the Hold-Out can be 

seen in Table 1, where the accuracy has been computed as the Classification Accuracy = 
∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

∑ 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 expressed as a percentage. 

From the results in Table 1, it can be seen that the designed self-learning framework is capable 

of automatedly learning the patterns in the data and thus the necessary intent decoding task was 

achieved with high accuracy. From the results it can be seen that the best accuracy for the Hold-Out 

testing was jointly between the EMG Only and EMG-EEG. For the case of the EEG, there was a 

reduction in the test accuracy by a factor of 10% for the GMM and 20% for the K-Means. This is 

thought to be due to EEG being a biosensor which requires a high amount of electrode channels when 

compared with EMG, and due to this provided a slightly lower test accuracy. In the case of the signal 

fusion of EMG-EEG, the test accuracy provided an identical result for both classifiers as was seen in 

the EMG only, although it is expected that the fused biosignals would be more robust to uncertainties 

that could cause misclassification of motion intent signals. Observing the results from both classifiers, 

it can be seen that GMM outperforms the K-Means for every configuration of the bio-signal input. 

The reason for this is thought to be due to the K-Means clustering assumption that the data is 

spherical whereas these kinds of bio-signals have been seen to be non-linear and favour non-linear 

class separation. Also, the GMM takes into account sample covariance as part of the clustering 

Algorithmic flow of the 

self-learning framework 

Electrode Chanel 

Selection & Reduction 



Eng. Proc. 2020, 1, FOR PEER REVIEW 7 

 

process, as can be seen in equation 10, thereby allowing for a more informed formation of clusters – 

with the tradeoff for this being additional computational requirements relative to K-Means, which 

works purely with Euclidean distance. 

Table 1. Results of the cluster assignment exercises and model accuracy validation using a Hold-Out 

test set (where highlighted figures represent the selected models which the Hold-Out test was 

validated on). 

 
GMM-

EMG Only 

K-Means-

EMG Only 

GMM-

EEG Only 

K-Means-

EEG Only 

GMM-

EMG-EEG 

K-Means- 

EMG-EEG 

Cluster 

Model 1 

Accuracy 

83% 81% 64% 63% 68% 83% 

Cluster 

Model 2 

Accuracy 

99% 81% 64% 58% 98% 83% 

Cluster 

Model 3 

Accuracy 

99% 81% 64% 58% 98% 83% 

Cluster 

Model 4 

Accuracy 

99% 81% 64% 58% 98% 83% 

Clustering 

Model 5 

Accuracy 

99% 81% 64% 58% 70% 83% 

Hold-Out 

Test 

Accuracy 

100% 80% 90% 60% 100% 80% 

Extension towards an Adaptive Control Framework 

Due to factors mentioned in Section 1, external factors could make redundant trained class 

boundaries, and as a result cause classifier degradation; this warrants the need for classifier re-

learning to adapt to the dynamic changes which may be causing performance degradation [4]. 

Researchers in this area, such as Samuel et al., Chen et al., and Asogbon et al. [12–14], have proposed 

extensions to various classifier architectures to allow online adaptation of classifier decision 

boundaries, as necessary [4]. Here we propose an extension of the presented self-learning control 

framework as a means of an adaptive framework for cluster decision cluster reformation with real-

time data from current anatomical and acquisition electronic states. As a means of controller 

adaptation, the self-learning process can be prompted either as an interval-based adaptive solution 

defined by a user-defined timeframe where the self-learning process is initiated to adapt the control 

architecture, or after a sequence of misclassifications occurs. Further research is required to 

investigate and formalize this notion. 

4. Conclusions 

In this paper, a self-learning controller framework capable of learning patterns from input data 

in an automated fashion and decoding phantom motion intents has been proposed. The framework 

comprises of a pre-processing stage involving the SFS followed by a 3-phase self-learning which 

includes feature extraction, dimensionality reduction and iterative clustering. The benefits of this can 

reduce the lag-time associated with the favored supervised learning method used in current 

myoelectric prosthesis control architectures, and add a further layer of autonomy to the prosthesis 

limb. This framework can also be expanded to help mitigate classifier degradation by being a user 

prompted re-learning framework capable of re-learning the class boundary variations in the data 

resulting from physiological changes and drifts in the acquisition electronics in the prosthesis arm. 

Subsequent work is now required to validate this approach on a broader number of transhumeral 
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amputees, followed with an optimization exercise to observe how many unique motion intents can 

form part of the framework while maintaining an acceptable intent decoding accuracy. 
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