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Abstract: Local Positioning Systems rely on ad-hoc node deployments which fit the environment 

characteristics in order to reduce the system uncertainties. The obtainment of competitive results 

through these systems requires the solution of the Node Location Problem. This problem has been 

assigned as NP-Hard, therefore a heuristic solution is recommended for addressing this complex 

problem. Genetic Algorithms (GA) have shown an excellent trade-off between diversification and 

intensification in the literature. However, in Non-Line-of-Sight environments in which there is not 

continuity in the fitness function evaluation among contiguous solutions, challenges arise for the 

GA. Consequently, in this paper, we introduce a Memetic Algorithm (MA) with a Local Search 

strategy for exploring the most different individuals of the population in search of improving the 

NLP results in urban scenarios for the first time. Results show that the MA proposed outperforms 

the GA optimization and attains an improvement of 6.51% in accuracy in the scenario proposed. 
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1. Introduction 

Local Positioning Systems (LPS) are attracting high research interest over the last few years [1]. 

Their interest relies on the proximity among target and architecture sensors reducing the 

uncertainties of the Global Navigation Satellite Systems (GNSS) for high-demanded accuracy 

applications such as precision farming, indoor navigation or automatic vehicles guidance. 

LPS are categorized through the physical property measured for locating the target: time, phase, 

power, angle, frequency or combinations of them. Among these systems, time-based localization 

stands since they have the better trade-off among accuracy, robustness, availability, hardware 

implementation and costs. As a consequence, time-based local applications in precision contexts are 

the most extended in the literature [2]. 

There exist different time-based configurations: Time of Arrival (TOA) [3], Time Difference of 

Arrival (TDOA) [4] or Asynchronous Time Difference of Arrival (A-TDOA) [5]. We have shown in 

our previous studies [6] that the synchronization effects have the most important relevance in the 

system uncertainties in LPS, thus, TDOA architectures are the most appropriate for local precision 

applications since these configurations are independent from the emission timestamp allowing the 

avoidance of the synchronism of the system clocks with the target. In this paper, we analyze the 

deployment of a synchronous TDOA architecture in urban scenarios for their extended use in the 

literature. 
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TDOA systems are based on the measurement of the relative time among the reception of a 

positioning signal in two different devices. Hyperboloid equations are generated as possible spatial 

target locations and at least 4 equations (i.e., 5 sensors) are needed to mathematically solve the 

localization problem although the problem can be addressed with four sensors [7] through an 

optimized node distribution. 

But, regardless the architecture used, LPS are only applicable for precision applications under 

optimized sensor locations which reduce the system uncertainties and adapt to the characteristics of 

the environment in which they are deployed. Therefore, an ad-hoc sensor distribution must be 

achieved and this requires the solution of the Node Location Problem (NLP) which is a combinatorial 

problem [8] that has been assigned as NP-Hard [9]. Due to the complexity of the NLP, a heuristic 

approach is required for achieving practical results. Dolphin swarm optimization [10], elephant 

herding optimization [11] or simulated annealing [12] have been used for the NLP but especially 

Genetic Algorithms (GA) [13] and Memetic Algorithms (MA) [14] stand due to their balanced 

exploration and intensification of the space of solutions. 

These heuristic techniques for the NLP require an optimization function for determining the 

quality of every node distribution. In the localization field, the Cramèr-Rao Bound (CRB) is 

widespread [15,16] since it represents the minimum achievable error by any positioning algorithm 

applied for calculating the target location. This maximum likelihood indicator allows a 

characterization of the ranging [17,18] and clock errors [6] and it is not derivable in the entire coverage 

area of the LPS [19], thus, the heuristic approach to the NLP is also recommended. 

However, the application of an evolutionary optimization for the NLP is particularly 

complicated in Non-Line-of-Sight (NLOS) environments in which the evaluation of the adaptation of 

the individuals among contiguous solutions (e.g., solutions which vary minimally in the location of 

a unique sensor in one spatial coordinate) can vary profoundly due its dependency on the obstacle 

geometry and their obstruction of the link between a possible target location and an architecture 

sensor node. 

As a consequence, we introduced in [14] a MA with a local search procedure for exploring 

potentially unfavored regions of the space of solutions and in this paper, we applied the MA for the 

first time in an urban scenario in which the presence of buildings notably affects the traditional 

Genetic Algorithm performance on the NLP. 

The remainder of the paper is organized as follows: we introduce the Cramèr-Rao Bound model 

for considering the clock and noise errors of the TDOA architecture in Section 2, we define the signal 

parameters of the optimization and the scenario of simulations in Section 3, we describe the MA in 

Section 4, the results are presented in Section 5 and the conclusions are discussed in Section 6. 

2. Cramèr-Rao Bound for the TDOA Architecture 

CRB is the common metric for characterizing the quality of a node distribution in the localization 

field [15]. Its use is widespread since it provides the least achievable error by any positioning 

algorithm in a defined sensor distribution. In [15] a CRB matrix form was introduced that in LPS 

requires a heteroscedastic noise consideration [16] in the covariance matrix of the architecture at 

study since the positioning signal path notably vary among the architecture sensors: 

𝐽𝑚𝑛 = (
𝜕ℎ(𝑇𝑆)

𝜕𝑇𝑆𝑚
)

𝑇
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) +

1

2
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where 𝐽𝑚𝑛 represents the Fisher Information Matrix (FIM) element whose inverse is the CRB, 𝑹  is 

the covariance matrix of the system in which the uncertainties are characterized, 𝒉 is the vector 

containing the information of the time measurements of the TDOA architecture, TS the target sensor 

and, m, n; the spatial coordinates of the target sensor considered.  

This covariance matrix must be modeled according to the system uncertainties: noise in Line-of-

Sight (LOS) and NLOS environments [18] and clock errors [6]. In the TDOA architecture, the time 

measurements are correlated [20,21], therefore a complete characterization of the covariance matrix 

must be accomplished: 
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where 𝐶𝑆𝑖  and 𝐶𝑆𝑗  are the coordinator sensors in which the positioning signal is received for 

collecting a time measurement, 𝑁𝐶𝑆  is the number of sensors in which the positioning signal is 

received from a determined TS location, 𝑐  the speed of the radioelectric waves, 𝐵  the signal 

bandwidth, 𝑃𝑇  the signal transmission power, 𝑃𝑁 the mean noise level, 𝑃𝐿 (𝑑0) the path-loss in the 

reference distance ( 𝑑0 ) from which the Log Normal path loss model of [17] is applied, 

𝑑𝑖𝐿𝑂𝑆
, 𝑑𝑖𝑁𝐿𝑂𝑆

, 𝑑𝑗𝐿𝑂𝑆
 𝑎𝑛𝑑 𝑑𝑗𝑁𝐿𝑂𝑆

 the distances from the TS to the 𝐶𝑆𝑖  and 𝐶𝑆𝑗  in LOS and NLOS 

conditions respectively calculated through the algorithm introduced in [18]; 𝑛𝐿𝑂𝑆  and 𝑛𝑁𝐿𝑂𝑆  the 

path loss exponents in LOS and NLOS conditions, l the number of iterations of the Monte Carlo 

simulation for estimating the clock uncertainties [6], 𝑇𝑖  and 𝑇𝑗  are the total time of flight of the 

positioning signal from target to the 𝐶𝑆𝑖  and 𝐶𝑆𝑗  and 𝑈𝑖 , 𝑈𝑗  and 𝑈0 and 𝜂𝑖, 𝜂𝑗  and 𝜂0 the initial 

time offset and the drift of the 𝐶𝑆𝑖 , 𝐶𝑆𝑗  and the reference clock for the system synchronization 

respectively. 

3. The Scenario of Simulations 

In this paper, we deploy a terrestrial LPS TDOA architecture used for outdoor positioning. We 

define in Table 1 the signal and clock parameters of the TDOA architecture for the NLP optimization 

in urban scenarios. 

Table 1. The values of parameters in the urban scenario configuration. 

Parameter Magnitude Units 

Frequency of emission 5.465 GHz 

Transmission power 1 W 

Bandwidth 100 MHz 

Receptor sensibility −90 dBm 

Mean noise power −94 dBm 

LOS path loss exponent 2.1 1  

NLOS path loss exponent 4.1 2  

Clock frequency 1 GHz 

Frequency–drift U{−15, 15} ppm 

Time–frequency product 1  
1,2 Path-loss exponents used in the Log-Normal model 

These parameters established the framework of the study. The urban scenario is modeled in 

Figure 1. We define two different regions for the optimization [13]: the Node Location Environment 

(NLE)—the possible locations for the architecture sensors- and the Target Location Environment 

(TLE) -the covered region for the navigation of the targets-. These regions are discretized for 

preserving the representativity of the space of solutions achieving optimal time-effective results [18]. 
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Figure 1. The 3D scenario of simulations. It represents the urban environment with the TLE region 

(orange) with the region of coverage of the LPS. 

The optimization of the TDOA architecture node distribution in the presented scenario considers 

noise and clock errors, the path losses in NLOS and LOS environments, and the effective coverage of 

the sensors. 

4. Memetic Algorithm 

The MA uses a GA combined with a local search procedure to obtain an optimized sensor 

distribution in the NLP problem. GA allow the exploration of the space of solutions through an 

evolutionary optimization process based on the genetic operators (crossover, selection and mutation).  

The variables for this heuristic optimization are the Cartesian coordinates of the location of the 

architecture sensors of the TDOA architecture through a binary codification for facilitating the 

performance of the GA operators [13]. In this scenario, we consider an eleven-sensor optimization 

which has proved to reach the global coverage of every TLE point analyzed. The quality of each 

individual of the population is measured through a fitness function evaluation considering the Root 

Mean Square Error (RMSE) which is obtained through the trace of the CRB model [17]: 

𝑓𝑓 = 1 − (
𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅

𝑅𝑀𝑆𝐸𝑟𝑒𝑓
)

2

 (4) 

where 𝑅𝑀𝑆𝐸𝑟𝑒𝑓 represents the maximum RMSE value for a TLE analyzed point thus keeping the ff 

values in the interval [0, 1][M1].  

However, the solution of the NLP in Non-Line-of-Sight (NLOS) environments has shown 

discontinuities in the analysis of the space of solutions. Therefore, we proposed a MA optimization 

[14] for exploring potentially unfavored regions in the evolutionary process through the application 

of a Variable-Neighborhood Descent (VND) LS to the most different obtained through the Hamming 

distance and the elite individuals of the population keeping the balance between diversification and 

intensification respectively [14]. Due to this LS methodology, we look for the most promising 

individuals within a limited solution environment, which may not be accessible through the 

evolutionary process and the GA's operators. 

Variable-Neighborhood Descent Local search  

The VND LS explores the neighborhood to obtain the best-adapted individual in a bounded 

region. In each iteration, 26 potential movements for each sensor are explored.  

The analysis of the fitness in the VND algorithm is performed through a pseudo-fitness function. 

The pseudo function allows the reduction of the time complexity of each evaluation and it is based 

on the exclusive analysis of the LOS/NLOS links of the positioning signal paths without considering 

the clock and the geometric uncertainties since they remain practically constant in the neighborhood. 

𝑓𝑓𝐿𝑆 =
1

∑ ∑ [𝑑𝑖𝐿𝑂𝑆
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𝑘=1

𝑁
𝑖=1

𝑇
𝑘=1

 (5) 
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5. Results 

The results obtained in this paper verify that the MA optimization allows the enhancement of 

the overall performance of the TDOA architecture and reduces the RMSE of the sensor distribution. 

Table 2. Mean of the RMSE in the TLE analyzed points in the scenario of simulations. 

Number of Nodes Genetic Algorithm Memetic algorithm 

9  4.30 4.02 

Figure 2 shows the evolution of the fitness function of the MA optimization. 

 

Figure 2. The convergence of the MA to the optimal solution of a 9-node distribution is shown. MA's 

executions are displayed in red. 

Finally, we present the accuracy results achieved by the MA in the TLE analyzed points showing 

the robustness of the architecture for its application in NLOS urban contexts. 

 

Figure 3. Optimal distribution obtained with a Memetic Algorithm for the nine-sensor distribution. 

6. Conclusions 

Local Positioning Systems are collecting research interest for high-demanded accuracy 

applications such as underwater localization or autonomous vehicle guidance. Their relevance relies 

on the ad-hoc deployment of sensors for reducing the uncertainties of the system operation. This 

requires the solution of the Node Location Problem which has been assigned as NP-Hard. Genetic 

Algorithms have shown an excellent adaptation for this problem for their balance between 

diversification and intensification but they suffer in NLOS environments due to the discontinuity in 

the fitness function evaluation among continuous solutions. In this paper, we propose a Memetic 

Algorithm for dealing with these discontinuities in the evolutionary Node Location Problem of the 

TDOA architecture in an urban scenario for the first time. Results show an improvement of the 

Memetic Algorithm of a 6.51% with regards to the Genetic Algorithm in the proposed scenario. 
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