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Abstract: Affective computing and stress recognition from biosignals have a high potential in 

various medical applications such as early intervention, stress management, risk prevention as well 

as monitoring individuals’ mental health. This paper presents an automated processing workflow 

for the psychophysiological recognition of emotion and stress states. Our proposed workflow allows 

processing biosignals in their raw state as obtained from wearable sensors. It consists of five stages: 

(1) Biosignal Preprocessing: raw data conversion and physiological data triggering, relevant 

information selection, artifact and noise filtering, (2) Feature Extraction: using different 

mathematical groups including amplitude, frequency, linearity, stationarity, entropy and 

variability, as well as cardiovascular-specific characteristics, (3) Feature Selection: dimension 

reduction and computation optimization using Forward Selection, Backward Elimination and Brute 

Force methods, (4) Affect Classification: machine learning using Support Vector Machine, Random 

Forest and k-Nearest Neighbor algorithms, (5) Model Validation: performance matrix computation 

using k-Cross, Leave-One-Subject-Out and Split Validations. All workflow stages are integrated into 

embedded functions and operators allowing an automated execution of the recognition process. The 

next steps include further development of the algorithms and the integration of the developed tools 

into an easy-to-use system satisfying the needs of medical and psychological staff. Our automated 

workflow was evaluated using our uulmMAC database, previously developed for affective 

computing and machine learning applications in human-computer interaction. 
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1. Introduction 

Affective Computing is a multidisciplinary field with high potential in many human-computer 

interaction applications [1]. Since Picard proposed the concept of affective computing, researchers 

from various disciplines have been investigating diverse perspectives, ranging from theories to 

applications and from design to evaluation. Among them is affective computing for healthcare 

technologies and medical applications [2]. One emerging application associated with the medical 

field is the emotion and stress recognition [3]. It is a promising topic seeing its wide prospect in daily 

applications such as early intervention, stress management, risk prevention as well as monitoring 

individuals’ mental health. In this context, various modalities ranging from facial, speech, text and 

biosignal analysis have been adopted for the purpose of emotion and stress recognition [4]. Among 

these modalities, psychophysiological signals have the valuable advantage as “honest signals”: they 

cannot be easily triggered by any conscious or intentional control and are continuously available [5]. 
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Affective computing from biosignals acquired through wearable sensors, adds the convenience of 

mobile implementation in real-life in-the-wild applications [6,7].  

For the implementation of affective computing and stress recognition in daily life applications, 

several prerequisites have to be achieved. On one side, the reflection of affective states in 

physiological patterns demands a particularly robust and reliable biosignal analysis [8,9]. On the 

other side, the integration of the recognition process into daily applications of non-experts in 

biosignal processing and machine learning requires an automated processing of the workflow stages 

[10,11]. This paper presents an automated processing workflow for the psychophysiological 

recognition of emotion and stress states. Our proposed workflow allows processing biosignals in 

their raw state as obtained from wearable sensors. It consists of five stages, allowing biosignal 

preprocessing, feature extraction, feature selection, affect classification and model validation. These 

aspects will be discussed in the following sections. 

2. Materials and Methods 

The proposed automated biosignal processing workflow for affective computing and stress 

recognition consists of the stages illustrated in Figure 1.  

 

Figure 1. The biosignal processing workflow for affective computing and stress recognition. It is based 

on psychophysiological biosignals as input. The workflow consists of the main steps: Biosignal 

Preprocessing, Feature Extraction, Feature Selection, Affect Classification and Model Validation. The 

output consists of recognition rates of different emotion and stress states. 

These workflow steps are described in the following subsections. 

2.1. Psychophysiological Biosignals 

Our workflow allows processing biosignals in their raw state as obtained from the bioamplifiers. 

They are usually acquired via electrodes and sensors connected to the subjects. The biosignals 

currently implemented in the workflow include the following physiological channels:  

 Electrocardiography (ECG): It measures the electrical cardiac activity and is related to the 

activity of the sympathetic nervous system. The magnitude of the electrical potential is obtained 

from the difference between positive and negative electrodes placed on the skin surface. 

 Electromyography (EMG): It measures the electrical muscle activity and is also related to the 

activity of the sympathetic nervous system. Relevant EMG channels include the Zygomaticus, 

Corrugator and Trapezius muscles known to be active during emotions. 

 Electrodermal activity (EDA) in terms of Skin Conductance Level (SCL): It indicates the activity 

of the sweat glands in the skin and is directly regulated by the sympathetic nervous system and 

therefore sensitive to external stimuli.  

 Respiration (RSP): It measures breathing patterns such as breathing frequency or relative depth 

of breathing. Respiration data can be acquired using piezoelectric sensors that react to pressure 

variations caused by the thoracic and abdominal fluctuations during respiration. The sensors are 

usually embedded into an elastic belt system worn around the thorax. 

 Temperature (TEMP): It detects the changes in hotness and coolness of the skin. Body 

temperature is measured using a temperature sensor placed on the skin (for example on the 

fingers) and that converts the temperature changes into an electrical signal. 

The biosignal data used for developing the present workflow were acquired with the 

bioamplifier system g.MOBIlab+ (www.gtec.at) with a sampling rate of 256 Hz. The data are part of 

our previously acquired uulmMAC dataset—A Multimodal Affective Corpus for Affective 
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Computing in Human-Computer Interaction, freely available for academic use and research 

applications [12]. 

2.2. Biosignal Preprocessing 

The first analysis step after the biosignal acquisition and prior the feature extraction is the 

preprocessing of the biosignal raw data. This includes extracting the raw data from the bioamplifiers 

and converting them into a readable format, triggering the physiological data with the help of subject-

specific logger files, cutting irrelevant data and selecting relevant information from the data, and 

performing various filtering steps to the different biosignal channels.  

The main goal of filtering is to remove various artifacts and reduce the amount of noise within 

each specific biosignal channel: For instance, ECG signals are affected by different kinds of noise 

including: baseline wander mainly caused by patient respiration, power line interference due to 

differences in the electrode impedances and to stray currents through patient and cables (considered 

as narrow-band noise and centered around 50 Hz and 60 Hz), as well as high frequency noise and 

other artifacts generated from equipment and environment. Therefore, various signal-specific 

algorithms and filtering strategies are used for removing different kinds of noise and artifacts 

including bandpass filtering, signal detrending and artifact correction. In our workflow, we 

implemented butterworth bandpass filters and low-pass filters. Butterworth bandpass filters can be 

used to eliminate noise and artifacts from ECG signals, to isolate the bursts of EMG signals that 

contain relevant information about the muscle activity, and to optimize the RSP signals. Low-pass 

filters are implemented to smooth the EDA and TEMP signals. The cut-off frequencies and filter 

orders can be easily adapted to individual channels and different datasets.  

Finally, the resulting filtered data are saved and exported into a readable Matlab-format for 

further processing. 

2.3. Feature Extraction 

The next step after data preprocessing is to extract appropriate features from the biosignals for 

an accurate further analysis. Therefore, each selected and preprocessed signal is first decomposed 

into small sliding windows. Reasonable window sizes for biosignals are between 5 s and 10 s with 

sliding steps in the range of 1 s or 2 s. Standard feature extraction methods based on pure 

morphological characteristics are not always sufficient for a reliable representation of specific 

affective states. Therefore, extended features shown to be efficient in the pain recognition field are 

adopted and implemented in our workflow for affective computing and stress recognition [13]. The 

features are extracted from six mathematical groups including amplitude, frequency, linearity, 

stationarity, entropy and variability. This set of features from the different mathematical groups is 

calculated for each of the biosignal channels. While these features contain meaningful information 

for the muscle, skin, respiration and temperature signals, the analysis of cardiovascular signals 

requires the extraction of specific ECG wave characteristics of the heart beats essential for reliable 

information interpretation. Therefore, additional ECG specific features such as QRS complex 

detection, various interval durations and heart rate variability are also computed based on our 

ecgFEAT toolbox for cardiovascular feature extraction and analysis [14]. 

The extracted features are then normalized by performing a feature z-transformation for each 

participant and channel. The standardization converts the feature values into z-scores by subtracting 

the mean and dividing by the standard deviation. 

2.4. Feature Selection 

Among the large number of extracted features, only non-redundant and relevant ones should 

be selected for further processing. This is necessary, to enhance the speed of the algorithms and to 

increase the efficiency of the recognition. A pre-selection is first performed using feature reduction 

to exclude similar redundant features based on statistical analysis with the Pearson correlation 

coefficient r. Thereby, the dimension of the features is reduced by examining each pair of features 
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under the condition r > 0.95. In case of correlated features, the feature requiring the higher 

computation time is removed. 

For further enhancing the efficiency of the classification, only relevant decisive features should 

be selected for further processing. Therefore, various feature selection methods are available based 

on different strategies. In our workflow, the following three feature selection methods are 

implemented including: Forward Selection (FS), Backward Elimination (BE) and Brute Force (BS) 

methods. The Forward Selection method begins with an empty selection of features and subsequently 

adds one feature (from the features set obtained after removing correlated features) which leads to 

the highest increase in performance in each iteration. The process is repeated until no increase in 

performance is observed anymore. On the other hand, the Backward Elimination method starts with 

the whole set of extracted features (obtained after removing correlated features) and subsequently 

removes one feature which results in the least decrease in performance in each iteration. Thus, the 

iteration of the Backward Elimination runs as long as there is no decrease in performance. Further, 

the Brute Force method tries all the possible combinations of features and selects the ones leading to 

the highest performance. Since the computation time associated with this method is quite expensive, 

the Brute Force is usually the last option to be used when only a small set of features is left after 

feature reduction. 

2.5. Affect Classification 

For the classification task, several machine learners are commonly used based on different 

decision algorithms. In our workflow, the following three classification algorithms are implemented 

including: Support Vector Machine (SVM), Random Forest (RF) and k-Nearest Neighbor (kNN). 

Among these classifiers, k-Nearest Neighbor is the simplest algorithm where the category of an 

unseen sample is determined by a majority vote of its k nearest neighbors. The performance and 

computation time of kNN depend on the size of the training sample. The larger the training sample 

is, the longer is the computation time and the better is the performance. The parameter k is set as an 

odd number (e.g., 3, 5, 7, 9). A too small value of k results in too much noise, while a large value of k 

leads to expensive computations. Random Forests are an ensemble learning, consisting of a great deal 

of decision trees. The following parameters are important for RF classifiers: the number of trees (e.g., 

11) and the depth of each tree. The higher the number of trees is, the better is to learn the data but the 

longer is the training process. Further, the deeper the tree is, the more information about the data can 

be captured. Support Vector Machines are based on finding an optimal hyperplane which has the 

largest distance to the nearest training data points of any category. With the help of kernels, SVM 

algorithms are only suitable in linear problems, but also perform efficiently in non-linear 

classification tasks. For SVM with RBF (radial basis function) kernel, the parameter C controls the 

generalization ability of the model, while the parameter gamma represents the degree of nonlinearity 

of the model. The higher the value of C is, the easier happens the over-fitting. While the higher the 

value of gamma is, the more nonlinear is the model. 

2.6. Model Validation 

In order to evaluate the performance of the feature selection and classification process, various 

validation methods are available providing and computing a performance matrix. In our present 

workflow, three validation methods are implemented including k-Cross Validation (CV), Leave-One-

Subject-Out (LOSO) cross validation and Split Validation (SV). k-Cross Validation divides the whole 

dataset into k subsamples and utilizes one of these subsamples for testing and the remaining 

subsamples for training within one iteration. This is repeated k times and the performance is 

computed as the average of the k different classification rates. Leave-One-Subject-Out cross 

validation is similar to the k-Cross Validation, but divides the whole dataset according to the 

participants. That is, each subsample in the case of Leave-One-Subject-Out cross validation comprises 

the complete data of one subject. Finally, Split Validation is not based on the cross principle. Instead, 

it just splits the whole sample into training and test subsamples according to a percentage predefined 

by the user. 



Proceedings 2020, 4, x FOR PEER REVIEW 5 of 6 

 

3. Results and Discussion 

The described stages of the proposed workflow for affective computing and stress recognition, 

illustrated in Figure 1, were developed and integrated into automated biosignal processing and 

machine learning tools. The first steps of the workflow including biosignal preprocessing and feature 

extraction are handeled in MATLAB (www.mathworks.com), while the second part of the workflow 

including feature selection, affect classification and model validation is processed in RapidMiner 

(www.rapidminer.com). 

For the first part, various Matlab-based functions were developed and implemented allowing to 

perform the different steps consisting of raw data conversion and physiological triggering, data 

cutting and information selection, signal filtering and feature extraction. These steps are integrated 

into embedded functions allowing an automated processing of this workflow part. The results are 

structured into separate RawData, TriggerData, CutData, FilteredData and ExtractedFeatures output 

files.  

As for the second part, various operators were designed in RapidMiner allowing to 

automatically run the recognition process based on a set of extracted features obtained from the first 

part. The first layer of the process contains the main operators allowing data import, feature 

reduction, class selection and model training and testing. The last operator for model training and 

testing allows switching to the next layers consisting of various operators for feature selection, affect 

classification and model validation. Particularly, the second layer consists of operators defining the 

classification algorithms, while the third layer is placed within the classifiers and includes both 

feature selection and model validation operators. Moreover, various operators for optimizing the 

parameters of the different classification algorithms are implemented, including optimization of the 

C and gamma parameters in the SVM classifiers, the number of trees in the RF classifiers and the k 

value in the kNN classifiers. 

The workflow was evaluated using biosignal data from our uulmMAC database for affective 

computing and machine learning applications [12]. The psychophysiological data were acquired in a 

human-computer interaction through an experimental setting using the g.MOBIlab+ wireless 

bluetooth bioamplifier system equipped with several physiological sensors. All biosignal channels 

were synchronously recorded at a fixed sampling rate of 256 Hz. We mainly used the classes overload 

and underload to evaluate the functional capability and general operability of the whole workflow. 

The next steps include further development of the algorithms and the integration of the developed 

tools into an easy-to-use system with graphical interface [10], satisfying the needs and requirements 

of medical and psychological staff. Also a systematic evaluation of the different feature selection, 

classification algorithms and validation methods will be performed for various classes and stress-

related recognition tasks. 

4. Conclusions 

This paper presents our workflow for affective computing and stress recognition from biosignal 

data obtained from physiological sensors. After a description of the biosignal channels included in 

the workflow, each step involved in the processing of the psychophysiological data is described, 

including signal preprocessing, feature extraction, feature selection, affect classification and model 

validation. Finally, the implementation and integration of the described steps are presented in the 

results. The present workflow is a valuable step towards automated affective computing and stress 

recognition for real-life applications in the medical and psychological fields. 
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