

The 24th International Electronic Conference on Synthetic Organic Chemistry

In Silico Identification of Protein Targets Associated to the Insecticide Activity of Eugenol Derivatives

Tatiana F. Vieira¹, Maria F. Araújo¹, Maria José G. Fernandes², David M. Pereira³, A. Gil Fortes², Elisabete M. S. Castanheira⁴, M. Sameiro T. Gonçalves², Sérgio F. Sousa^{1*}

¹ UCIBIO/REQUIMTE, BioSIM - Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal

² Centre of Chemistry, Department of Chemistry, University of Minho, Campus of Gualtar,

4710-057 Braga, Portugal

- ³ REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy,
- University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;

⁴ Centre of Physics, Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; * Correspondence: sergiofsousa@med.up.pt

Introduction

- The search for environmental-friendly approaches in insect pest control has attracted many researchers hoping to find more specific and less toxic alternatives.
- Eugenol is a natural compound that is the major component of clove oil and has demonstrated antimicrobial and antioxidant activity.
- The search for new eugenol derivatives with higher efficiency was boosted to find additional alternatives to known insecticides.
- Limitation: lack of knowledge of the specific protein target and the binding conformation of these molecules.
- In this study, we report the application of an integrated molecular modelling

 inverted virtual screening protocol for the identification of potential
 protein targets for a series of eugenol derivatives

Methods

Six different scoring functions: PLP, ASP, ChemScore, GoldScore, Vina and LeDock Optimization of: docking box and dimensions, search efficiency and number of runs

Selected Targets

The literature was explored for other virtual screening studies performed on known targets to minimize the candidate pool. Of 18 studies found, 14 targets were selected to continue the study.

A-ESTERASE-7 PEPTIDE DEFORMYLASE STEROL CARRIER PROTEIN-2 (HASCP-2) OCTOPAMINE RECEPTOR VOLTAGE-GATED SODIUM CHANNEL OXIDOREDUCTASE P-HYDROXYPHENYLPYRUVATE DIOXYGENASE POLYPHENOL OXIDASE (PPO) ODORANT BINDING PROTEIN ACETYLCHOLINESTERASE N-ACETYLGLUCOSAMINE-1-PHOSPHATE URIDYLTRANSFERASE (GLMU) B-N-ACETYL-D-HEXOSAMINIDASE OFHEX1 CHITINASE ECDYSONE RECEPTOR (ECR)

Eugenol derivates

EU2d

EU2a

HO

EU2e

EU2f

EU2c

Ô

Eugenol and eleven derivatives (EU1-EU3e) were selected as new potential insecticides. These molecules have been previously synthesized and validated experimentally with good insecticidal activity

Docking in all the targets with all SF: PLP, ASP, ChemScore, GoldScore, Vina and LeDock. A ranked list was prepared based on the average scores of each target.

EU3c

Results & Discussion

Ranking	PLP	ASP	ChemScore	GoldScore	Vina	LeDock	Overall Ranking
Odorant Binding Protein	1	4	1	3	2	2	1
Acetylcholinesterase	2	1	2	5	1	5	2
Chitinase	4	2	5	2	6	7	3
Octopamine receptor	3	5	3	1	5	10	4
Peptide deformylase	6	11	12	4	7	1	5
Oxidoreductase	5	12	4	6	11	4	6
beta-N-acetyl-D-hexosaminidase OfHex1	7	3	9	7	3	13	7
ecdysone receptor (EcR)	9	9	8	10	4	3	8
Alpha-esterase-7	8	6	7	12	9	8	9
Sterol carrier protein-2 (HaSCP-2)	13	8	6	14	8	6	10
p-hydroxyphenylpyruvate dioxygenase	10	7	11	13	10	12	11
Polyphenol oxidase (PPO)	11	10	10	9	14	14	12
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU)	12	13	13	11	12	9	13
Voltage-gated sodium channel	14	14	14	8	13	11	14

Targets that presented highest binding affinity for eugenol derivates

Targets that presented lowest binding affinity for eugenol derivates

Results & Discussion

Odorant Binding Proteins (OBPs) are a large family of proteins crucial for insect survival and reproduction. Very small targets and are ideal to perform rapid screenings. Are a emergent target for new repellents. Acetylcholinesterase (AChE) is a serine hydrolase responsible for regulating the levels of acetylcholine. One of the most common targets of synthetic pesticides with some pests already showing resistance. Finding <u>new</u> pesticide alternatives is crucial.

Conclusion

- This work presents a simple approach for the application of inverted virtual screening in identification of possible targets for new insecticides.
- Eugenol derivatives were docked into each target with six different scoring functions (PLP, ASP, ChemScore, GoldScore, Vina and LeDock). The consistency of the scores was evaluated and a ranked list was created.
- Eugenol derivates showed an increased binding affinity for odorant binding proteins and acetylcholinesterase.
- Since there is, already, in the PDB database a structure of an OBP bound to eugenol, we can confirm our theory and can say that eugenol derivates, could be used as repellents.
- Additional computational and experimental studies need to be performed to further optimize and develop this hypothesis.

Aknowlegments

FINITAÇÃO PARA A CIÊNCIA E ENSINO SUPERIOR

This research was funded by COMPETE 2020 program, co-financed by the FEDER and the European Union, PTDC/ASP-AGR/30154/2017 (POCI-01-0145-FEDER-030154) and by UCIBIO (UIDB/04378/2020).