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CO:CO, Ratio Technique: Brief Review and Comparison with
other Tracer Techniques

» Oxygen isotope ratio (6*80): Can distinguish between biogenic and anthropogenic CO, based on
the fact that evaporative enrichment of H,180 in plants and soils imparts a unique signature to
evolved CO, in respiration. This require intensive modelling of evaporative enrichment and CO,
equilibration

» Radiocarbon (}*C) isotopic tracer technique: Based on the fact that fossil fuel combustion releases
CO, with no 1#C since the half-life of 4C is much shorter than the age of fossil fuels. The technique
IS expensive

» In addition to cost effectiveness, the CO tracer technigue is based on the fact that local excess
biogenic sources of CO are negligible in the urban environment. The technigue provides continuous
diurnal and seasonal Information on urban CO, sources that are useful in deciphering seasonal
patterns of energy use and respiratory fluxes



Review Fossil Fuel CO, Flux Estimates in the United States

» Nine regions defined by the US
Census Division, over which fossil
fuel CO, flux estimates are
aggravated

» We focus son East South Central
Region where our measurements
are made
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Basu et al., Atmos. Chem. Phys., 16, 5665-5683, 2016



East South Central USA Region Fossil Fuel Fluxes: Previous Work
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» QObservation System Simulation
Experiments (OSSES)

» Evaluated the ability of the dual
tracer inversion framework to
separately estimate fluxes over the
conterminous US using synthetic
observations corresponding in
space and time to:

(a) actual observations in the NOAA
ESRL Global Greenhouse Gas
Reference Network

(b) An enhanced observational
network with **CO, measurements

Basu et al., Atmos. Chem. Phys., 16, 5665-5683, 2016



Biospheric Fluxes over the USA and the Eastern Region: Previous Work
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Monthly net biospheric CO, flux estimates for
the NRC 5000 network scenario with and
without 14CO, observations along with prior
and true fluxes aggregated for the
conterminous and eastern US

» NRC 5000 (traditional) inversion model: does
not optimize fossil fuel fluxes and does not
assimilate **CO, observations.

» For both the inversions above, large numbers
of CO, observations in the NRC 5000
scenario drive the biosphere flux estimates
toward true fluxes

» Adding “CO, helps to address carry-over
bias arising from erroneous specification of
the fossil fuel prior.

16, 56655683, 2016



Study Site: Eastern Highland Rim region of the United States
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» The study site is surrounded by

367200°N i -36°200°N broadleaf and deciduous trees

Jeckson and shrubs, hence accurate

Rel ..o quantification of surface sources,
atmospheric sources resulting
from the oxidation of

367100 hydrocarbons like isoprene is

important
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Map of the location and surroundings of the city of Cookeville and the study
site (36.1628° N, 85.5016° W).



Experimental Methods: Cavity Ring-Down Spectroscopy (CRDS)

Compressed Air Connections
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CRDS Measurement in the Overtone Region
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High precision mode, uses the 6057.0795 cm-! line while the high dynamic range
mode uses the lines at 6056.8134 and 6056.840 cm- lines.



Precision and Drift Tests

Gaseous species and gas Drift analysis (24 hrs.) Precision tests (29 hours)
concentrations (ppm) Required Observed 5 sec (0) 5 min (o) 1 hour (o)
(Ppb) (Ppb) _ _ .
Required Observed Required Observed Required Observed
(ppb) (ppb) (ppb) (ppb) (ppb) (ppb)
CO, 250 42.330 9.943 15.740 16.100
400 <100 28.557 <0 13.361 <20 20.861 <10 21.327
500 53.160 17.494 25.679 26.928
CH, 1 0.069 0.090 0.135 0.136
2 0.115 0.159 0.232 0.233
<1 <1 <0.5 <0.3
5 0.567 0.387 0.568 0.573
10 0.658 0.703 1.045 1.056
15 0.637 1.022 1.431 1.441
CcoO 2 1.506 2.478 3.580 3.600
<10 <15 <15 <1
10 1.286 2.681 3.880 3.905




CO:CO, Ratio Technique

(Gamage et al., ACS Earth Space Chem. 2020, 4, 4, 558-571):

COprot)= COuagy + COpan + COgigrverevrvnrermaniarrreireaeeieieniaeeeens. (1)
COspi0 = COuron = (COppg + COppn)--evevavrrerieiaeereaie et resieniae e e 2)
COpn = COpron= COg cvvvevrverieitere et et et e (3)
COan = COu T B oo (4)
CO4gi0= COuron = COng = (COron = COg) / B wvvvervineaneaieianeannns. (5)

CO,,:CO,,, ratios (B ratios) were determined using the total weighted least squares regression
method, taking into account the uncertainties in both the measured CO, and CO mixing ratios



Typical Diurnal Cycle of CO and CO, Mixing Ratios (5-day average)
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Seasonal and Standardized Diel Patterns of CO,

—— Winter > Diel pattern standardized by subtracting

—— Spring 24- hr mean CO, from hourly CO,
—— Summer

Fall
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» As expected the day/night alterations between
photosynthesis and respiration, atmospheric
boundary layer dynamics, and local/regional pollution
transport processes all contribute to observed diel
cycles in CO, mixing ratios.

» Pronounced diel cycles of CO, in summer, with
night peaks and afternoon troughs that are mainly
driven by nighttime respiration and daytime CO,
photosynthesis drawdown

» Flat winter diel cycles are indicative of biological
fluxes that are more constant throughout the
daytime.



Partitioning Urban CO, signal into Bio and Anthropogenic signals
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Winter Biospheric and Anthropogenic CO,

Positive enhancement is expected in winter, when both CO,,,, and CO. are sources to the atmosphere.
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CO,,,, Signal varies seasonally and
diurnally in both magnitude and in sign.
Throughout the winter, the CO,4 signal
remains largely positive

CO,,,, signal is also positive during the
wintertime, albeit at far much lower
mixing ratio magnitudes.

The CO,,, iIs mainly influenced by
wintertime respiration and domestic
biofuel burning.

Although the CO. is expected to
remain positive during the summer, the
daytime CO,,,, may be strongly
negative due to photosynthetic
drawdown



Springtime Biospheric and Anthropogenic CO, Signals
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Throughout the springtime, the CO 4
signal remains largely positive

In contrast with the winter months, we
begin to see strong negative CO,,,,
signals which are mainly due to
strong photosynthetic drawdown

During the spring, biological
respiration can contribute more to
CO,

Reduced wintertime domestic heating
contributes to decreasing
contributions of fossil fuels during

spring.



Conclusions

» The CO tracer technique has been utilized in conjunction with continuous cavity
ring down spectroscopic measurements to provide useful information about
urban diurnal as well as seasonal anthropogenic and biospheric patterns in the
Eastern Highland Rim region of the United States

» Continuous CRDS measurements have revealed that above-background
biological respiration contributed increasingly more CO, than other sources
during spring than during the wintertime.

» The winter CO,,;, values were all nearly zero or slightly positive, implying the
active role of wintertime respiration fluxes.

» Overall, this study has demonstrated the potential of a CO-based technique
method in quantifying CO.,4, especially in the unavailability of the much more
superior, though expensive techniques such as the 1“CO,
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