

Neuropeptide Y protective role on okadaic acid induced diarrhoea

Celia Costas¹, M. Carmen Louzao^{1,*}, Paula Abal¹, Andrea Boente-Juncal¹, Carmen Vale¹, Natalia Vilariño¹, Mercedes R. Vieytes², Luis M. Botana¹.

1 Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain 2 Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain * E-mail: mcarmen.louzao@usc.es

Okadaic acid (OA) group of toxins produce Diarrheic Shellfish Poisoning after contaminated seafood ingestion leading to gastrointestinal symptoms such as diarrhoea^{1,2}. These polyether compounds are synthetised by dinoflagellates of the genera Prorocentrum and *Dinophysis*^{1,2}. Proteins Phosphatases (PPs), mainly PP1 and PP2A, are the known target of these phycotoxins¹. However, some information arise the possibility of OA affecting other pathways that would result in diarrhoea. A wide variety of diarrheic agents have been described to

alter in the Enteric Nervous System³. Neuropeptide Y (NPY) is a neuronal-origin peptide present in enteric and sympathetic neurons that exert an antisecretory tone^{4,5}. Previous in vitro studies have described that OA reduces NPY expression and release^{6,7}. Thus, we aimed to assess the effects of NPY on OA induced-diarrhoea.

a

barrier at 2 h of treatment.

Methods

In vivo assay.

- Mice were placed individually in metabolic caged and fasted overnight (5% glucose serum).
- 2. Animals were given 450 μ g/kg NPY followed by 500 μ g/kg OA 15 minutes afterwards.
- Food and water were provided *ad libitum*.
- 4. Information regarding diarrhoea onset, changes in body weight, food and water consumption (a), along with symptoms (c) were recorded
- During necropsy anatomopathological examination took place and samples from small and large intestines were removed and processed for Transmission Electron Microscopy (b).

Symptomatology

Table 1. Symptomatology developed.

Symptoms	Control	NPY	ΟΑ	OA-NPY
Apathy	0	0	0	1
Piloerection	0	0	1	1
Cyanosis	0	0	2	1
Spasms	0	0	1	0
On-hind legs	0	0	2	2
Squint eyes	0	0	5	1
Diarrhoea	0	0	5	5
Mortality	0	0	0	0
Total mice	3	3	5	5

Physiological variations Diarrhoea onset 40-Time (min) 50-10-

NPY **OA-NPY** ΟΑ Control

Fig. 1. Timeline scheme of the in vivo assessment.

Macro- and Microscopic evaluation

b

Fig. 2. Diarrhoea onset time, body weight variation, food and water intake. Asterisks indicate significant differences versus Control (P<0.05*, P<0.01**).

Large intestine

> Fig. 3. Anatomopathological representative images (Abdominal cavity) and Transmission Electron Microscopy of small and large intestines (scale bar $1 \mu m$). Mitochondria (red arrows) and microvilli with the terminal web (red bracket) are indicated.

References:

[1] European Food Safety Authority. Opinion of the Scientific Panel on Contaminants in the Food chain on a request from the European Commission on marine biotoxins in shellfish – okadaic acid and analogues. The EFSA Journal 2008, 589, 1-62.

- [2] Yasumoto, T.; Oshima, Y.; Yamaguchi, M. Occurrence of a new type of shellfish poisoning in the Tohoku District. Bull. Japan. Soc. Sci. Fish. 1978, 44, 1249-1255.
- [3] Anand, S.; Mandal, S.; Patil, P.; Tomar, S.K. Pathogen-induced secretory diarrhea and its prevention. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1721–1739. [4] Cox, H.M. Endogenous PYY and NPY mediate tonic Y₁- and Y₂-mediated absorption in human and mouse colon. *Nutrition* 2008, **24**, 900-906.
- [5] El-Salhy, M.; Hausken, T. The role of the neuropeptide Y (NPY) family in the pathophysiology of inflammatory bowel disease (IBD). Neuropeptides 2016, 55, 137-144.
- [6] Louzao, M.C.; Fernández, D.A.; Abal, P.; Fraga, M.; Vilariño, N.; Vieytes, M.R.; Botana, L.M. Diarrhetic effect of okadaic acid could be related with its neuronal action: Changes in neuropeptide Y. Toxicol. Lett. 2015, 237, 151-60.
- [7] Valdiglesias, V.; Fernández-Tajes, J.; Pásaro, E.; Méndez, J.; Laffon, B. Identification of differentially expressed genes in SHSY5Y cells exposed to okadaic acid by suppression subtractive hybridization. BMC Genomics 2012, 13, 46.

Acknowledgments:

The research leading to these results has received funding from the following FEDER cofunded-grants. From CDTI and Technological Funds, supported by Ministerio de Economía, Industria y Competitividad, AGL2016-78728-R (AEI/FEDER, UE), ISCIII/PI16/01830 and RTC-2016-5507-2, ITC-20161072. From Conselleria de Cultura, Educacion e Ordenación Universitaria, Xunta de Galicia, 2017 GRC GI-1682 (ED431C 2017/01). From European Union POCTEP 0161-Nanoeaters -1-E-1, Interreg AlertoxNet EAPA-317-2016, Interreg Agritox EAPA-998-2018, and H2020 778069-EMERTOX. Celia Costas and Andrea Boente-Juncal are supported by a fellowship from Ministerio de Ciencia, Innovación y Universidades grant FPU18/05681 and FPU16/07129, respectively.

