

A closer look at the functional diversity of cytotoxins from Southeast Asian cobras: Biomedical and clinical significance

Choo Hock Tan^{1*}, Ho Phin Chong¹, Kae Yi Tan²

¹ Venom Research and Toxicology Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia ² Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia *Email: tanch@um.edu.my

Introduction

Naja sumatrana Photo credit: Nick Baker Cobra venoms contain cytotoxic components that can be further explored for anticancer potential. Cobra venom cytotoxins are polypeptides of 60–70 amino acid residues held by four disulfide crosslinks, forming a three protruding fingers-like structure and is grouped under the three-finger toxin superfamily. Its unique structure gives rise to its diverse pharmacological actions such as pore formation and disruption of cell membranes. Its cytotoxic properties, nevertheless, imply the possibility to harness cobra cytotoxins in the development of new anticancer drugs. The present study explores the two most common cobra species in Southeast Asia, *Naja sumatrana* (equatorial spitting cobra) and *Naja kaouthia* (monocled cobra) to elucidate the prospect of cytotoxin-derived anticancer therapeutics, through investigating the anticancer properties of the purified cytotoxins of *N. sumatrana* and *N. kaouthia* in breast, prostate, and lung cancer cell lines. The study further delved into the specificity and selectivity of the cytotoxins and verified the cell death mechanisms underlying their cytotoxic activities.

Methods

Validate and identity with 15 % reducing SDS-

PAGE and LCMS/MS. Sequence analysis with

Multiple Sequence Alignment

Sequential fractionation with cation exchange chromatography followed by reverse-phase high performance liquid chromatography

Results

Figure 1. Purification of cytotoxins. Resource S cation-exchange HPLC of *N. sumatrana* (A) and *N. kaouthia* (B) venoms. C₁₈ reverse phase-HPLC of CTX-containing fraction 8 of *N. sumatrana* (C) and *N. kaouthia* (D) venoms. Arrows indicate the major basic cytotoxins purified.

Both cobra species were resolved into 8 fractions with cytotoxins present at fraction 8. *N. sumatrana* and *N. kaouthia* cytotoxins eluted at 110-125 min and 90-115 min respectively.

Cytotoxicity tested with MTT on A549, PC-3 and MCF-7 cell lines. 5-fluorouracil used as positive control.

Flow cytometry with Annexin-V fluorescein isothiocyanate (FITC) conjugated / propidium iodide stains

Validation and sequence analysis of cytotoxins

Figure 2. SDS-PAGE of purified cytotoxins from *N. sumatrana* (NS-CTX) and *N. kaouthia* (NK-CTX) venoms

Figure 3. Multiple sequence alignments of NS-CTX and NK-CTX, showing P-type and S-type cytotoxins. Arrow in red indicated Proline³⁰ of P-type cytotoxins; blue arrow indicates Serine²⁸ of S-type cytotoxin.

SDS-PAGE showed homogenous protein band of approximately 7 kDa for both purified cytotoxins. Multiple sequence alignment showed the presence of Pro³⁰ in NS-CTX whilst NK-CTX possessing Ser²⁸, respectively categorizing the cytotoxins are P-type and S-type cytotoxins.

Cell-type specificity, selectivity and mechanism of action of cytotoxins

Table 1. Half maximal inhibitory concentrations (IC ₅₀) and selectivity index of NS-CTX and NK-CTX in cancer and normal lung, prostate and breast cell lines.										
Tissue origin			NS-CTX				NK-CTX			
		Cell line	IC ₅₀ (µg/ml)		Selectivity index		IC ₅₀ (µg/ml)		Selectivity index	
Lung		A549 NL20	0.8	$\frac{8 \pm 0.06}{1 \pm 0.52}$		2.17 1.22 ± 2.76 ±		= 0.09 = 0.49	2.26	
Prostate		PC-3 RWPE-1	PC-3 3.1 RWPE-1 0.3		3 ± 0.58 5 ± 0.08).11 4.46 ±		0.15	
Breast		MCF-7 184B5	9.1 6.2	0 ± 0.56 1 ± 0.37	0.68		12.23 ± 0.76 2.83 ± 0.34		0.23	
Valu	ies were expr	essed in mean±	ed in mean± S.E.M.							
	Cell line Untrea		ted 5-fluorou		racil	NS-CTX		NK-CTX		
	A549	Victor 66 4 4 4 4 4 4 4 4 4 4 4 4 4	Q1 Late apoptotic/ne 0.6 % 0.9 % 98.1 % 0.4 % 98.1 % 0.4 % 24 99.1 % 0.4 % 25 0 % 0.9 % 98.1 % 0.4 % 26 0 % 0.9 % 26 0 % 0.9 %		Q1 Late apoptotic/ne 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Q1 Late apoptotic/ne 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Value cels Value apoptotic/ne 4 Compared and a co	
	PC-3	901 - 501 -	Q1 Late apoptotic/ne 1.9 % 0.7 % Viable & 0.6 % 96.7 % Early apoptotic 96.7 % Early apoptotic 99.7 % Early apoptotic 97.7 % FITC-A		Q1 Late apoptotic/n Q2 C2 C3 C3 C4 C4 C5 C4 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5		9 Q1 Late apoptotic/n 13.2.%		Q1 Late apoptotic/n 40 0 4770 7 4770 7 4770 7 5 4770 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	MCF-7	V 0.2 %	Late apoptotic/f 9.2 % 2.8 % Early apoptotic Time10^5 A	Vale cols 47 0 10 102 47 0 10 102 47 0 10 102 FITC-	ate apoptotic/r 10.7 % 2.9 % Early apoptotic 10 ⁴ 10 ⁵ A	9 11.6 % Vid 122 0 192	Late apostotic/r 43.1 % 1.2 % Early apostotic 10 ³ 10 ⁴ 10 ⁵ FITC-A	Q1 Q1 Q1 Q1 Q1 Q1 S4.3	Late apoptotic/r 41.5 % 1.2 % Early apoptotic b ⁰ 10 ⁴ 10 ⁵ ITC-A	

Conclusion and future work

NS-CTX and NK-CTX were highly potent in inhibiting the growth of the lung, prostate and breast cancer cell lines but lack selectivity for the latter two cell lines. Although A549 showed good selectivity, the cells mainly underwent necrosis. The study underscores the need for a comprehensive, fundamental investigation to address the selectivity and cell death mechanism of venom proteins. The anticancer potential of the toxins, however, may be further improved through structural modification to deliver a more specific, molecularly targeted cancer therapy in the future.

Figure 4. Cytotoxicity of NS-CTX, NK-CTX and 5FU on cancer and normal cell lines. Cell viability plot for cancer (**A**; A549, PC-3, and MCF-7) and normal (**B**; NL20, RWPE-1, and 184B5) cell lines. IC₅₀ of cell lines treated with NS-CTX and NK-CTX (**C**). One-way ANOVA with Bonferroni post hoc test was used to determine statistical significance across three cancer cell lines (*** indicates p < 0.001).

Figure 5. Dot plots showing flow cytometric cell death mechanism of cancer cell lines induced by NS-CTX and NK-CTX treatment.

NS-CTX, NK-CTX, and 5FU showed dose-dependent cytotoxic activities in cancer cell lines and normal cell lines. Increasing cytotoxicity in the following order: MCF-7 < PC-3 < A549. Normal breast and prostate cells were more susceptible to NS-CTX and NK-CTX, whilst selectivity was seen in lung cell lines. Flow cytometry demonstrated varying cell death mechanisms, Predominantly necrosis and late apoptosis in the cancer cell lines. Necrosis in the A549 and mainly late apoptosis in the MCF-7 cell line.

Reference

 S. Antil-Delbeke, C. Gaillard, T. Tamiya, P.J. Corringer, J.P. Changeux, D. Servent, and A. Menez, Molecular determinants by which a long chain toxin from snake venom interacts with the neuronal alpha 7-nicotinic acetylcholine receptor. The Journal of biological chemistry 275 (2000) 29594-601.
D. Servent, S. Antil-Delbeke, C. Gaillard, P.J. Corringer, J.P. Changeux, and A. Menez, Molecular characterization of the specificity of interactions of various neurotoxins on two distinct nicotinic acetylcholine receptors. Eur J Pharmacol 393 (2000) 197-204.

3. A.G. Konshina, I.A. Boldyrev, Y.N. Utkin, A.V. Omel'kov, and R.G. Efremov, Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids. PLOS ONE 6 (2011) e19064.

4. Y.S. Chan, R.C. Cheung, L. Xia, J.H. Wong, T.B. Ng, and W.Y. Chan, Snake venom toxins: toxicity and medicinal applications. Appl Microbiol Biotechnol 100 (2016) 6165-81.

5. K. Ebrahim, H. Vatanpour, A. Zare, F.H. Shirazi, and M. Nakhjavani, Anticancer Activity a of Caspian Cobra (Naja naja oxiana) snake Venom in Human Cancer Cell Lines Via Induction of Apoptosis. Iran J Pharm Res 15 (2016) 101-112.