IEC2M 2021

The 1st International Electronic Conference on Metallurgy and Metals 22 Feb – 07 March 2021

Leaching kinetics of selenium, tellurium and silver from copper anode slime by sulfuric acid leaching in the presence of manganese(IV) oxide and graphite

Kurniawan^{1,2}, Jae-chun Lee^{1,2}, Jonghyun Kim^{1,2}, Rina Kim^{1,2}, Sookyung Kim^{1,2} ¹Resources Recycling, Korea University of Science and Technology, Daejeon 34113, South Korea ²Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, South Korea

AM Korea Institute of Geoscience and Mineral Resources iec2m.sciforum.net

Outline

- Introduction
- Objective
- Experimental
- Results and discussion
- Conclusions

Introduction

Generation of copper anode slime

Copper electrorefining process

•

•

Copper in the anode is oxidized, then reduced back to the cathode Impurities are left and settle down to the bottom of the cell as slime

Introduction

Metallurgical process of anode slime

Objective

- Reporting an efficient metal recovery process from CAS through sulfuric acid leaching in the presence of MnO₂
- Investigating the catalytic effect of graphite
- Investigating the leaching kinetics of constituent metals (Se, Te, Ag) from CAS

Experimental

Material

CAS obtained from a copper smelter in South Korea

Chemical composition

Element	Se	Ва	Те	Ag	Au	Pt*	Pd*
Content (%)	22.23	12.13	1.53	9.66	0.046	37.93	2.94

*in ppm

• Sample is rich of Se and Ag

• Major phases: Se⁰, Ag₂Se, BaSO₄

XRD Pattern

Experimental

Leaching

IEC2M 2021

Table 2. Parameters investigated

Parameters	Variations		
H_2SO_4 conc. (M)	0.5, 1.0, 1.5, 2.0, 3.0		
MnO ₂ dosage (MnO ₂ /CAS mass ratio)	0, 0.2, 0.4, 0.6, 0.8, 1.1		
Graphite dosage (graphite/CAS mass ratio)	0, 0.2, 0.4, 0.6, 0.8, 1.0		
Temperature (°C)	25, 50, 60, 70, 80, 90		

Fixed conditions: Stirring speed 500 rpm; leaching time 6 h; solid/liquid ratio 2.5 g/250 ml

Effect of H_2SO_4 concentration

Leaching behavior of (a) Se, (b) Te, (c) Ag in H₂SO₄ solution as a function of time (Variation of H₂SO₄ conc., 0.5–3.0 M; MnO₂/graphite/CAS mass ratio 0.8/0.8/1; temperature 70 °C; stirring speed 500 rpm; time 6 h)

• Formation of Ag₂S at high H₂SO₄ concentration

Effect of MnO₂ dosage

Leaching behavior of (a) Se, (b) Te, (c) Ag in H₂SO₄ solution as a function of time (Variation of MnO₂/CAS mass ratio, 0–1; H₂SO₄ conc. 2.0 M; graphite/CAS mass ratio 0.8/1; temperature 70 °C; stirring speed 500 rpm; time 6 h)

• Metallic ions become very crowded at high MnO₂ dosage

Effect of graphite dosage

Leaching behavior of (a) Se, (b) Te, (c) Ag in H₂SO₄ solution as a function of time (Variation of graphite/CAS mass ratio, 0–1; H₂SO₄ conc. 2.0 M; MnO₂/CAS mass ratio 0.8/1; temperature 70 °C; stirring speed 500 rpm; time 6 h)

High dosage of graphite hindered the contact between CAS and lixiviant

Kinetics study

Shrinking core models are used:

- Diffusion through a product layer: $1 \frac{2}{3}(1-x) + (1-x)^{\frac{2}{3}} = k_d t$
- Surface chemical reaction: $1 (1 x)^{\frac{1}{3}} = k_r t$
- Empirical mixed kinetic model: $[1 (1 x)^{\frac{1}{3}}]^2 = k_m t$

Leached fractions of Se, Te and Ag at different temperatures

Leached fraction of (a) Se, (b) Te, (c) Ag in H₂SO₄ solution as a function of time (Variation of temperature, 25–90 °C; H₂SO₄ conc. 2.0 M; MnO₂/graphite/CAS mass ratio 0.8/0.8/1; stirring speed 500 rpm; time 6 h)

Kinetic study: Se

Plot of Se leaching using the kinetic models of (a) diffusion control, (b) surface chemical reaction, and (c) mixed control as a function of time at different temperatures

Se leaching rate at all investigated temperatures followed the surface chemical reaction with $R^2 > 0.97$

Kinetic study: Te

Plot of Te leaching using the kinetic models of (a) diffusion control, (b) surface chemical reaction, and (c) mixed control as a function of time at different temperatures

Change of rate-controlling step from mixed model (25–50 °C) to diffusion control model (60–90 °C)

Kinetic study: Ag

Plot of Ag leaching using the kinetic models of (a) diffusion control, (b) surface chemical reaction, and (c) mixed control as a function of time at different temperatures

Change of rate-controlling step from surface chemical reaction (25–50 °C) to mixed control (60–90 °C)

Kinetic study: Arrhenius plot

- Activation energies of Se = 27.7 kJ/mol (25–90 °C); Te = 17.8 kJ/mol (60–90 °C); and Ag = 12.2 kJ/mol (60–90 °C)
- Graphite lowered the activation energies

Conclusions

- An efficient process of sulfuric acid leaching of CAS with MnO₂ and graphite
- Graphite acted as the catalyst
- Increasing H₂SO₄ conc., MnO₂ and graphite dosage, and temperatura increased the leaching yields
- Kinetic data for Se, Te and Ag fitted well to shrinking core models

