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Mathematical theories of spinors

O 1. Covariant spinors (matrix columns or rows) -
Elie Cartan.

O 2. Algebraic spinors - approach 1s based on theory of
Clifford algebras. Matrix representation in a 2m
dimensional
complex space in the form of square matrices 2m-2m,

O 3. Superalgebraic spinors — extension of the theory
of algebraic spinors and of axiomatic algebraic QFT. Theory
of C*-algebras. Grassmann variables and derivatives with
respect to them. CAR-algebra of second quantization of
fermions ( CAR — Canonical Anticommutation Relations )



—!
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4-component superalgebraic spinors
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Gamma-operators (analogs of matrices):
two additional compared to Dirac’s theory!
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Operators of annihilation and creation of spinor.
Operator of generalized Dirac conjugation
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Discretization of momentum space. Spinor
vacuum
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Properties of the spinor vacuum

Yo (p) =Y (-p) = \PV+ =y
(‘Fy )2 =y
b(p,)Y, =0, annihilation operator

51_( p; )Y, # 0,creation operator

¥, 1s primitive Hermitian idempotent.



Alternative spinor vacuum
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bi (p;)— annihilation operator

b, (p;)—creation operator



Clifford algebra: operators of retlection

Operator A transforms Clifford vector X as
X'=AXA" =(QAX(A)™,
1.e. A1s defined up to numerical factor A
Operator A transforms spinor ¥ as
Y'=4VY,
(P, ¥)=(V.¥) =>1=¢"
A=17" =>7""=7" 7F'=—9F k£ =1,23,6,7,5—reflects "

~an ~a "bt Ach
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CAR algebra: operators of retlection

Operator A4 transforms Clifford vector X as
X'=AXA" =(1A4A) X (1A)™", numerical factor A

Operator A4 transforms spinor ‘¥ as
¥'=AY¥., numerical factor A =¢e'?.

New : Operator 4 transforms antispinor ¥ as
¥'=4Y.

New : CAR algebra {1 f A0 (P} =6,6(p—p")
00" (p)
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R-operators

dG =[dG,e]

(1+dG)¥,\¥,.. ¥, =1+[dG, ¥V, |¥,.. ¥, +¥,[dG,¥,]. W, +...=
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OV, W, = (0W)(eF,)...e0 )

Re = eé —1t1s R - operator

Other R - operators:

Complex conjugation (-)* , transposition (O)T ,

Hermitian conjugation (.)+ = (o)T (o)*



Operators Q and P
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— generator of rotations in the plane ?6 ; ?7,

Operator of charge 1n the theory of second quantization.
oY =V, oY =-¥
7Y = e' P, 09 = oY
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Operator T of time reflection

]1 — R_xo R?1?3 (.) . \‘PV —> LPV
“Rewinding the film”, annihilation operator

must become creation one, and vice versa
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Charge conjugation C

CPT operator must be antiunitary. Operator P 1s
unitary, T 1s antiunitary and reversing vacuum.

Therefore, charge conjugation operator C must
be unitary and reversing vacuum.

Cl — R_qu-?% , LI”V —> “I”V

C=RCy=R_R z-(o), ¥y >V,



Conclusion 1

P — R_ka')A(OQA’

T=R sRy(e)", ¥y — ¥, breakssymmetry

Y, ->Y,,

C=R_ R ;v (O)T, Y, - ¥, breaks symmetry
CPT=R_,R .J,, Yy >y
Ji = Ry (0)* —operator of real structure

(charge conjugation) in Krein spaces.
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Conclusion 2

0O Operators T and C are not consistent with vacuum of
the Universe.

O They can only be approximate symmetry operators.

O The symmetry breaking is small when spinor 1s
independent paeticle.

O Vacuum 1s multiparticle state.

O P, TC, CPT can be €xact symmetry operators of
SpINOTS.



