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Abstract: The merger of a binary neutron star (BNS) system can lead to different final states,1

depending on the total mass of the binary and the equation of state (EOS). One of the possible2

outcomes of the merger is a long-lived (lifetime > 10ms), compact and differentially rotating remnant.3

The Komatsu, Eriguchi and Hachisu (1989) differential rotation law (KEH) has been used almost4

exclusively in the literature to describe such configurations, despite the tension with corresponding5

rotational profiles reported from numerical simulations. New rotation laws suggested by Uryu et al.6

(2017) aspire to ease this tension and provide more realistic choices to describe the rotational profiles7

of BNS merger remnants. We have recently started constructing equilibrium models with one of8

the new rotation laws proposed, and comparing their physical properties to the KEH rotation law9

counterpart models. In addition, building on earlier work, the accuracy of the IWM-CFC conformal10

flatness approximation with the new differential rotation law has been confirmed.11
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1. Introduction13

Differential rotation in relativistic stars has drawn a steady research interest because it is relevant14

in phenomena such as binary neutron star (BNS) mergers that can provide information through15

gravitational and electromagnetic waves observations for the behaviour of matter at high densities,16

i.e. the equation of state (EOS). More specifically, if the total mass M of the BNS is greater than the17

maximum mass of a cold, uniformly rotating neutron star, Mmax,rot, then the compact remnant that is18

formed during the merger can survive for several tens of milliseconds (ms) supported by differential19

rotation and thermal pressure. Oscillations of the post-merger remnant could lead to tight constraints20

for the EOS in case of detection of one (or more) of three observable frequencies ( fpeak, f2−0, fspiral)21

[1–4].22

While numerical simulations are used primarily to study BNS mergers, their high computational23

cost calls for complementary approaches, such as equilibrium modelling in order to allow for faster24

and wider parameter space exploration. In the equilibrium framework, several aspects of the merger25

remnant are neglected in order to obtain idealized models of its structure. Enriching these initial26

idealized models by adding gradually, selected realistic components of the binary coalescence problem27

ensures that this method can still provide useful insights.28

Concerning the differential rotation aspect of the BNS merger problem, the simple solution that29

was adopted for years in the relevant literature was the rotation law30

F(Ω) = A2(Ωc −Ω) (1)

by [5] (hereafter KEH), where A is a positive constant that determines the length scale over which the31

angular velocity Ω varies within the star, Ωc is the angular velocity at the rotation axis and F = utuφ32
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denotes the gravitationally redshifted angular momentum per unit rest mass and enthalpy. Limiting33

cases of the rotation law (1) are the uniform rotation case for A→ ∞ and the j-constant law for A→ 034

(where j = huφ is the specific angular momentum).35

More realistic rotation laws have been proposed [6], that better describe a remnant’s rotational36

profile as reported from simulations (e.g. see [7] for a recent study). In our recent work [8], we37

investigate one of the new rotation laws, compare physical properties of constructed models with the38

"classic" KEH law to the new law and verify its suitability to describe BNS merger remnants.39

2. Methods40

Within the framework of full general relativity (GR), in [8] we construct stationary and41

axisymmetric stellar configurations in equilibrium, described by the line element:42

ds2 = −eγ+ρdt2 + eγ−ρr2 sin2 θ(dφ−ωdt)2 + e2µ(dr2 + r2dθ2) , (2)

with γ, ρ, ω and µ being metric functions that depend only on the coordinates r and θ. Matter is43

described as a perfect fluid, assuming a polytropic EOS:44

p = Kρ1+ 1
N , (3)

where p is the pressure, ρ is the rest mass density, K is the polytropic constant and N is the polytropic45

index (see [9] for details). We choose N = 1 and K = 100, which is a common choice in the literature46

for testing numerical codes. We note that a polytropic model is calculated with K = 1 and then rescaled47

to K = 100 (or any other choice of K) by multiplying with appropriate factors [10].48

In order to create our equilibrium models we use an extended version [11,12] of the public domain49

rns code [13,14]. The code is based on the KEH scheme [5] and includes modifications by [10]. We50

expanded the code in order to implement the 4-parameter rotation law introduced in [6]51

Ω = Ωc

1 +
(

F
B2Ωc

)p

1 +
(

F
A2Ωc

)q+p , (4)

(hereafter Uryu+ law). The parameter p controls the growth of the rotation curve near the rotation52

axis and parameter q controls the asymptotic behavior of Ω(r). Setting q = 3 recovers the Keplerian53

rotation law in the Newtonian limit. In Figure 1 we present an example of the angular velocity profile54

in the equatorial plane, for the Uryu+ rotation law (4).55

We choose the values {p, q} = {1, 3}, for which the integral in the hydrostationary equilibrium56

expression has an analytic solution. The parameters A and B are determined by solving for them in57

each iteration, via fixing the ratios of the maximum angular velocity over the angular velocity at the58

center of the configuration, λ1 = Ωmax/Ωc, and of the angular velocity at the equator over the angular59

velocity at the center, λ2 = Ωe/Ωc, to certain selected values [6,15]. As reference values for the ratios60

{λ1, λ2} we adopt the choice {2.0, 0.5} as in [6]. However, differences in rotational profiles seen in61

numerical simulations of post-merger remnants, when different EOS and total masses are used [7,16]62

provides motivation to examine two values for the first parameter λ1 = {2.0, 1.5} and two values for63

the second parameter λ2 = {0.5, 1.0}, leading to four distinct pairs of {λ1, λ2}.64

3. Results65

For comparison with previous work [11,17] employing the KEH differential rotation law, in [8]66

we construct three sequences of equilibrium models using the new differential rotation law (4):67

• Sequence A is a constant rest mass sequence with M0 = 1.506.68

• Sequence B is a constant central energy density sequence with εc = 1.444× 10−3.69

• Sequence C is a constant central energy density sequence with εc = 3.3× 10−3.70
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Figure 1. Angular velocity Ω profiles in the equatorial plane for model C6 (axis ratio rp/re = 0.43),
constructed with the Uryu+ rotation law with {λ1, λ2} = {2.0, 0.5} (see Section 3 for details). (a) left
panel: plotted versus the gravitationally redshifted angular momentum per unit rest mass and enthalpy
F. (b) right panel: plotted versus the coordinate radius r. Figure from [8].

Throughout the text we employ dimensionless units for all physical quantities by setting c = G =71

M� = 1 (see also [10]). We note that the maximum mass nonrotating model for our chosen EOS has a72

central energy density εc = 4.122× 10−3, with a gravitational mass of M ' 1.64 and a rest mass of73

M0 ' 1.8. Figure 2 acts as an illustrated definition of equilibrium sequences A, B and C.74

We perform a comparison between the new Uryu+ rotation law and the KEH law and verify a75

close agreement for the masses of the corresponding configurations. The left panel of Figure 3 shows a76

difference at the 1% level for low density and rapidly rotating models, that becomes much smaller as77

the compactness increases for sequences B and C (right panel). There is a slightly larger influence of the78

rotation law choice on the radius, as smaller radii are found for the Uryu+ models. This is attributed to79

a weaker centrifugal force in the Uryu+ models, since the angular velocities at the equator Ωe were80

also found to be smaller. We note that results shown in Figure 3 are obtained with the reference values81

{λ1, λ2} = {2.0, 0.5}.82

In order to highlight the distinction between quasi-toroidal and quasi-spheroidal morphologies we83

explore additional values of parameters {λ1, λ2} for a representative model with rp/re = 0.5 (Figure 4).84

From the four pairs of {λ1, λ2} values considered, only the pair {2.0, 0.5} leads to a quasi-toroidal85

configuration. This is consistent with the corresponding Ω(r) profile having the highest degree of86

differential rotation (right panel of Figure 4). Similar results are obtained with corresponding models87

with rp/re ∼ 0.5 from sequences A and C. We go on to construct full sequence C variations (i.e. of88

constant central energy density εc = 3.3× 10−3) with the Uryu+ rotation law but different {λ1, λ2}89

values. The M(Re) curves in Figure 5 summarize the four equilibrium variation sequences (extra90

equilibrium solutions were calculated for Figure 5, in order to produce smoother curves).91

A mass-shedding limit is found for the cases {λ1, λ2} = {2.0, 1.0} and {1.5, 1.0} at axis ratio92

values of 0.38602 and 0.46693 respectively. This classifies these sequences as type A solutions according93

to [18]. For the cases {λ1, λ2} = {2.0, 0.5} and {1.5, 0.5}, no mass-shedding limit is found. For the94

terminal models of the latter sequences, i.e. the highest mass models of the corresponding curves95

in Figure 5, the maximum density is located off-center and quasi-toroidal morphology has been96

established. The above characteristics classify these sequences as type C solutions according to [18].97

As a worst case scenario, in [8] we also perform a comparison between full GR and the IWM-CFC98

conformal flatness approximation [19,20] for a representative model of our most compact sequence C99

with rp/re = 0.5 for the highest degree of differential rotation considered here, i.e. {λ1, λ2} = {2.0, 0.5}.100

Figure 6 shows the energy density and angular velocity profiles of the specific model for the GR and101

IWM-CFC case. We find that the IWM-CFC approximation remains acceptably accurate for models102

with an axis ratio rp/re = 0.5, than can be considered as merger-mimicking candidates. The relative103
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Figure 2. Gravitational mass M versus the central energy density εc for definition of sequences A, B
and C. For reference the nonrotating (TOV) sequence (solid line), the mass-shedding (Kepler) limit for
uniform rotation (dashed line) and the axisymmetric instability limit for uniform rotation (dotted line)
are shown. Figure from [8].

10 12 14 16 18 20 22 24
Re

1.40

1.41

1.42

1.43

1.44

1.45

1.46

M

sequence A (Uryu+)

sequence A (KEH)

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5
Re

1.4

1.6

1.8

2.0

2.2

2.4

2.6

M

sequence B (KEH)

sequence B (Uryu+)

sequence C (KEH)

sequence C (Uryu+)

Figure 3. Comparison of the gravitational mass M versus the circumferential radius Re for the
equilibrium models of sequences A, B and C, constructed with the Uryu+ and the KEH differential
rotation laws. The values {λ1, λ2} = {2.0, 0.5} have been used for the Uryu+ law calculations. Figure
from [8].
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Figure 4. Effect of the different options for parameters {λ1, λ2} for model B10 (rp/re = 0.5). (a) left
column: energy density profile ε(r) versus the coordinate radius r in the equatorial plane. (B) right
column: angular velocity profile Ω(r) in the equatorial plane. Figure from [8].
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Figure 5. Gravitational mass M versus the circumferential radius Re for the variations of sequence
C, constructed with the Uryu+ differential rotation law and employing different {λ1, λ2} values.
Equilibrium models with {λ1, λ2} = {2.0, 0.5} and {1.5, 0.5} are type C solutions, while models with
{λ1, λ2} = {2.0, 1.0} and {1.5, 1.0} are type A solutions [18]. Figure from [8].



Version February 1, 2021 submitted to Proceedings 6 of 9

0 1 2 3 4 5 6 7
r

0.8

1.6

2.4

3.2
ε

(×
10
−

3 )
C5 Uryu+

C5 Uryu+ CFC

0 1 2 3 4 5 6
r

0.04

0.06

0.08

0.10

0.12

Ω

C5 Uryu+

C5 Uryu+ CFC

Figure 6. Comparison between full GR and the IWM-CFC approximation for model C5 (rp/re = 0.5)
calculated for the Uryu+ rotation law with {λ1, λ2} = {2.0, 0.5}. (a) left panel: energy density profile
in the equatorial lane ε(r) versus the coordinate radius r. (b) right panel: angular velocity profile in the
equatorial plane Ω(r) versus the coordinate radius r. Figure from [8].

errors for local quantities (such as the radius and the angular velocity) are up to ∼ 2.5% and ∼ 1%104

for the masses and the ratio T/|W| of the rotational kinetic energy over the absolute value of the105

gravitational binding energy. This is consistent with the corresponding errors reported in [17] for the106

same sequence calculated with the KEH rotation law with Â = 1 (Figure 7).107

4. Discussion108

In [8] we found that the versatility of the new Uryu+ rotation law allows for construction of109

equilibrium solutions with a rotational profile much closer to the one observed for merger remnants110

in numerical simulations, while at the same time dwelling in the realm of type A solutions [18] (i.e.111

quasi-spherical). This is an important development towards constructing more realistic equilibrium112

models that can mimic the properties of merger remnants. Having more realistic models available113

will allow further insights about stellar stability and the threshold for prompt collapse to emerge in114

future studies. A necessary first step to that direction, is to expand this study for realistic and hot115

EOS. Recently, new multivariate, empirical relations were reported for the post-merger frequencies116

fpeak (the dominant oscillation frequency stemming from excitation of the fundamental quadrupolar117

l = m = 2 mode), fspiral (stemming from a spiral deformation, the pattern of which rotates slower118

with respect to the double-core structure in the center of the remnant) and f2−0 (stemming from a119

non-linear coupling of the m = 2 mode to the fundamental quasi-radial m = 0 mode) [21]. Another120

interesting follow-up would be to study these oscillations and empirical relations using configurations121

constructed with the new Uryu+ law via time evolution or perturbation methods.122
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Figure 7. Absolute values of the relative difference between full GR and IWM-CFC approximation for
the gravitational mass M, the ratio of rotational to gravitational binding energy T/|W|, the equatorial
circumferential radius Re and the angular velocity at the center of the configuration Ωc for sequence C
calculated with the KEH rotation law. Values at T/|W| ∼ 0.16 correspond to an axis ratio rp/re = 0.5.
Figure from [17].

Figure 8. Surfaces corresponding to empirical relations for the three different post-merger frequencies
fpeak, fspiral and f2−0, as a function of the chirp mass Mchirp and the equatorial circumferential radius
R1.6 of a nonrotating model with gravitational mass M = 1.6M�. Figure from [21].
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KEH Komatsu, Eriguchi and Hachisu
EOS equation of state
BNS binary neutron star
IWM Isenberg, Wilson, Mathews
CFC conformal flatness condition
GR general relativity
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