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Abstract: We consider and prove the existence of stable, spherical, and thin fluid shells in the context
of a Schwarzschild-Rindler-anti-de Sitter (SRAdS) background. We identify the metric parameter
regions that allow the existence and stability of these shells for three cases of fluid equations of state.
The case of the vacuum shell is especially interesting since it remains consistent with past studies
of two of the authors of this manuscript that showed the existence of stable spherical domain walls
in the context of the same metric. This type of structures could be an alternative to the idea of the
gravastar star formations.
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1. Introduction

The concept of a thin shell spherical shells in General Relativity holds great significance
as a theoretical construct because as was first shown in [1], one can use it to model the
interactions between matter and gravity and find analytical solutions to the Einstein
equations governing them.

The gravastar [2–6] is such a theoretical, spherical, and stable thin shell configuration
that can be used to accurately describe an alternative to black hole as the last step of
stellar evolution. The concept of gravastars portray star structures that alternate between a
Schwarzschild metric for its exterior and a de Sitter metric for its interior space, with the
inner region considered traditionally as a gravitational Bose-Einstein condensate with zero
entropy.

As shown in [7] a stable spherical thin shell solution similar to that of the gravastar
can be found when considering a non-trivial background geometry of a Schwarzschild-anti-
deSitter curved spacetime [7,8] with a Rindler acceleration term, coupled with spherically
symmetric scalar field dynamical equations. This metric is a Schwarzschild-Rindler-anti-
deSitter (SRAdS) metric [9],

ds2 = f (r)dt2 − dr2

f (r)
− r2(dθ2 + sin2 θdφ2)

f (r) = 1− 2Gm
r

+ 2br− Λ
3

r2
(1)

where Λ is the well known cosmological constant, and b is the parameter attributed to the
Rindler acceleration .

This SRAdS metric (1) has been subject to constrains appended by solar system
observations[10,11], it can produce flat rotation curves [12], and it has been shown to
partially explain [13,14] the Pioneer anomaly [15,16].

A new analysis [17] was instigated by the fact that this type of metric has a demon-
strated ability of supporting metastable structures such as spherical domain walls. Specifi-
cally the question that was raised was whether this metric could foster thin shell solutions
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adhering to the three most general forms of equations of state, corresponding to a vaccuum
shell, a stiff matter shell and a dust shell.

In what follows we will show how we made use of the Israel junction conditions
formalism to explore the aforementioned question by breaking it down to four simpler
points of interest:

• Is it possible to construct stable, thin, fluid shells within a SRAdS metric?
• If so, which are the specific, general conditions that have to be met in order to achieve

stability?
• What are the numerical metric parameter ranges that enable stability, considering the

conditions induced by the different equations of state?
• How does the radius R of the stable shell change as a function of the metric parameters

within the allowed numerical space?

As mentioned above we have made use of the Israel junction condition formalism in
order to interpolate between the two metric parts of the shell, in each case of equations of
state. The value of the shell mass m has been considered to be discontinuous radially across
the shell, m− inside and m+ outside, in contrast to the values of the b and Λ parameters
that are considered to have continuous fixed values when crossing the shell.

The manuscript is structured as follows: In the first section we show the general theory
that has been developed entailing the derivation of stability conditions for a static and
spherical shell with a general equation of state on a SRAdS metric background geometry. In
section 3 we show how these results can be applied to three specific cases of fluid equations
of state, as well as how we can derive the conditions for stability in each case. Finally, in
the last section 4 of the manuscript, we discuss the opportunities for extending the analysis
presented here.

The following assumptions have been made in the entirety of the manuscript: We set
G = c = 1, as well as m− = 1. For the parameter values considered here an event horizon
exists but no cosmological horizon, and the shell radius is always outside the event horizon
of the black hole.

2. Existence and Stability of Thin Shell Solutions

We begin by defining a spherical and thin shell with a radius R which alternates
between an interior (g−µν) and an exterior (g+µν) SRAds metric of the form [2,3,18],

ds2 = f±(r±)dt2 −
dr2
±

f±(r±)
− r2
±(dθ2 + sin2 θdφ2) (2)

where,

f±(r±) = 1− 2m±(r±)
r±

(3)

and

m±(r±) = m± +
Λ
6

r3
± − br2

±. (4)

Considering the case of a shell in the context of the SRAdS metric (1) one can derive the
Israel junction conditions in the form of [3]

p =
1

8πR

1−m±(R)′ −m±(R)/R + Ṙ2 + RR̈√
1 + Ṙ2 − 2m±(R)/R

 (5)

σ = − 1
4πR

[[√
1 + Ṙ2 − 2m±(R)/R

]]
, , (6)



The 1st Electronic Conference on Universe 3 of 8

where (′) denotes the derivative of the mass with respect to r, and the dot corresponds to
the derivative with respect to the proper time, defined as

dτ2 = − 1
1− 2m±(R)/R

[
dR
dt

]2
+ dt2

[
1− 2m±(R)

R

]
dt2. (7)

From these equations one can derive the equation for the energy conservation of the shell

d
dτ

(σR2) + p
d

dτ
R2 = 0. (8)

Then eq. (6) could be written as,

E =
1
2

Ṙ2 + V(R) (9)

considering that,

V(R) ≡ 1−
[

4πσR2

2R
+

m+(R) + m−(R)
4πσR2

]2

+
4 m+(R) m−(R)

16π2σ2R4 (10)

and E = 0.
Therefore, the necessary general conditions for the existence and stability of a static

fluid shell take the form,

V(R) = 0

V
′′
(R) > 0

V
′
(R) = 0,

(11)

where we have made the assumption that eq. (9) is exactly the same as that of a particle
moving in a straight line with zero energy. For the SRAdS metric the general form of the
potential of the shell has the form

V(R) = 1− ΛR2

3
− (m− −m+)2

16π2R4σ(R)2 −
m− + m+

R
− 4π2σ(R)2R2 + 2bR. (12)

In what follows we show the derivation of the system of equations that constrain the
ranges of of (b, Λ) that permit the existence of stabl, spherical fluid shells. Specifically, we
concern ourselves with three distinct types of fluid shells, the vacuum, the stiff matter, and
the dust fluid shell. We also derive the numerical ranges of the metric parameters that
allow for stability.

3. Specific Cases of Shell Stability
3.1. Shell with vacuum fluid equation of state

Firstly, we concern ourselves with the case of the vacuum shell with an equation of
state,

p = −σ. (13)

Therefore the surface density takes the form,

σ(R) = σ0 = const. (14)



The 1st Electronic Conference on Universe 4 of 8

In this case the system of eqs. (11) necessary for the existence and stability of a shell solution
becomes,

V(R) = 1− m− + m+

R
− ΛR2

3
− (m− −m+)2

16π2R4σ2
0
− 4π2σ2

0 R2 + 2bR = 0, (15)

∂V
∂r

∣∣∣
r=R

= 2b +
m− + m+

R2 − 2ΛR
3

+
(m− −m+)2

4π2R5σ2
0
− 8π2σ2

0 R = 0, (16)

∂2V
∂r2

∣∣∣
r=R

= −2Λ
3
− 2(m− + m+)

R3 − 5(m− −m+)2

4π2R6σ2
0
− 8π2σ2

0 > 0. (17)

Whereas its solution is written as

Λ(R, σ0) =
15(m− −m+)2

16π2R6σ2
0

+
6(m− + m+)− 3R

R3 − 12π2σ2
0 , (18)

b(R, σ0) =
3(m− −m+)2 + 8π2[3(m− + m+)− 2R]R3σ2

0
16π2σ2

0 R5
, (19)

R > 3(m− + m+) ≡ Rmin (20)

σ0 ≡

√
15
√
− (m−−m+)2

R3(3m−+3m+−R)

4π
+ ∆σ >

√
15
√
− (m−−m+)2

R3(3m−+3m+−R)

4π
≡ σ0min (21)

where ∆σ corresponds to perturbations of the surface density σ0.
The fact that the parameters R and σ0 display lower limits as seen in eqs. (20), (21)

allows us to derive boundaries on the values of (b, Λ) that permit the existence and stability
of the stable shell solutions. These lower and uppper boundaries are of the form,

Λ→ −∞ =⇒ b→ − 1
6(m+ + m−)

(22)

σ0min → 0 and Λ→ −12π2σ2
0 > 0 (23)

b < 0 with Λ < Λmax = −12π2σ2
0 . (24)

In Fig. 1 [17] we can see the aforementioned boundaries as well as the parameter
space that allows for stability considering the values ofm+, m− m+, m−. The minimum
value of the parameter b is increased as m+ is increased (see eq. (22)). For the three sets
of (R, σ, b, Λ) displayed as color coded dots in the the right panel of Fig. 1 we show their
corresponding potentials in Fig. 2 [17], noticing that only those potentials that correspond
to the parameter sets that exist inside the stability region display a minimum that indicates
stability.

In order to validate our analytical results we have performed a random Monte-Carlo
process selecting a set of points in the parameter space (b, Λ) for which there exist stable,
spherical shell solutions, as seen in Fig. 3 [17]. We have obtained these points by fixing
m− = 1, m+ ≡ m+/m− = 1.5, and repeating a process of considering random values of
(R = Ri, σi) within the limits set by the stability constrain (20) such that σi > σ0min(Ri)
(see eq. (21)). For each point in the set of (R = Ri, σi) values we derive the stability metric
parameters (b, Λ).

3.2. Stiff matter and pressurless dust fluid shells

Regarding the stiff matter shell the equation of state takes the form

p = σ. (25)

with a surface density of,
σ(R) = σ0R−4 (26)
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Figure 1. We see the how the stability regions (light blue region) vary for two cases of exterior masses of the shell. Each of the different
colored curves correspond to different values of the surface density σ0 ≡ σ0min + ∆σ > σ0min. The left panel corresponds to m+ = 1.05
and the right to m+ = 1.5.
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Figure 2. The potential (15) for the values of (b, Λ) that correspond to the points highlighted in Fig.
1. We see that the red point of Fig. 1 does not correspond to a stable shell solution.

whereas for the case of the dust fluid shell the equation of state is

p = 0. (27)

with a surface density,
σ(R) = σ0R−2 (28)

The potentials (12) are,

V(R) = 1− ΛR2

3
+ 2bR− (m− −m+)2R4

16π2σ2
0

− m− + m+

R
−

4π2σ2
0

R6 (29)
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Figure 3. A random Monte-Carlo selection of points that satisfy the shell existence and stability
conditions (18 - 21) for m+ = 1.5. The orange line represents the limit of the region which is clearly
respected by all the randomly selected points which span the stability region.

and

V(R) = 1− ΛR2

3
+ 2bR− (m− −m+)2

16π2σ2
0
− m− + m+

R
−

4π2σ2
0

R2 (30)

for each case respectively. Solving the system (11) for these potentials produces Λ and b of
the form,

Λ(R, σ0) = −9(m− −m+)2R2

16π2σ2
0

+
6(m+ + m−)− 3R

R3 +
84π2σ2

0
R8 , (31)

b(R, σ0) = − (m− −m+)2R3

16π2σ2
0

+
3(m− + m+)− 2R

2R2 +
16π2σ2

0
R7 . (32)

for the stiff matter case, and

Λ(R, σ0) =
3(m− −m+)2

16π2R2σ2
0

+
6(m− + m+)− 3R

R3 +
36π2σ2

0
R4 , (33)

b(R, σ0) =
(m− −m+)2

16π2Rσ2
0

+
3(m− + m+)− 2R

2R2 +
8π2σ2

0
R3 . (34)

for the dust fluid shell.
We expect that the range of the metric parameters that allow for stability of the stiff

matter shell solutions will be narrower than that of vacuum shell. This is because the
potential of eq. (29) contains an extra repulsive term proportional to R4, and therefore
has the side-effect of diminishing the attraction produced by the anti-deSitter term ∼ ΛR2

(Λ < 0) which is very important for the stability of the shell.
The potential (30) that corresponds to the dust fluid shell does not contain any high

order terms of R, e.g. R4, this benefits the stability at larger R by not constraining the effect
of the anti-deSitter term ∼ ΛR2 (Λ < 0). This means that the stability range for the case of
the dust fluid shell is much wider than the case of the stiff matter equation of state.

4. Conclusion

We have constructed thin, spherical, fluid shell structures in the SRAdS metric and
we have proved their stability. These shells are very similar with the gravastar structures
[2,3,19–21], if only for the fact that instead of having an interior described by a de sitter
metric they are described by the SRAdS metric throughout.
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Our analysis could present the opportunity for interesting extensions, including the
investigation of the existence and stability of spherical fluid shells in the context of various
metrics. Perhaps one could consider a non continuous metric broken up in two pieces, half
containing a Schwarzschild term and half containing a Rindler term.

Arguably, the most important extension of our study would be the investigation of
the observational effects produced by these types of shell structures. We can study the
lensing patterns produced by the lightlike geodesics along the lines of Refs [22,23]. Such
observational signatures can directly compared with those of gravastars [24]. Lastly, it
would be interesting to investigate non-spherical fluid shells in the context of rotating
spacetimes coupled with the cosmological constant.

Funding: This research is co-financed by Greece and the European Union (European Social Fund -
ESF) through the Operational Programme "Human Resources Development, Education and Lifelong
Learning 2014-2020" in the context of the project "Scalar fields in Curved Spacetimes: Soliton Solutions,
Observational Results and Gravitational Waves" (MIS 5047648).
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