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Figure 2: Classically connected
intensity interferometer [2].

Figure 1. Classical amplitude

interferometer [1].
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The LIGO-Virgo HBT interferometer

2nd order correlation function
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Figure 3: An HBT interferometer is BTy ra— "

not classically connected. The Figure 4: Time lag [4] At — 7
interference is in the non-classical ¢, LIGO-Virgo network.

wave functions [3].
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2nd order correlations

The section on Glauber corre-
lations is a demonstration that
signals detected by LIGO-Virgo
are not coherent. 9

Coherent or “steady” signal /é
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Time Weighted Average
Using the conventional method the correlation function takes the
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correlation was |nvest|gated which was generated from the
oscillatory intensity described by:
I(t) = Ip(1 + Apsin(wt))
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Figure 6: Glauber correlation of the oscillatory intensity using a time

weighted average [7] 5/15



Intensity Weighted Average
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Figure 7: Glauber correlation of the oscillatory intensity using an intensity

weighted average [7]
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Comparison of Glauber Correlation Functions
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Figure 9: Intensity weighting [7]

Figure 8: Standard time average [7]
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Sine-Gaussian Approximation of a Black Hole Merger
Using a function of the form: h(t) = %e_(t+lfm)2 cos(2mwt)
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Figure 11: Sine-Gaussian Model
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Figure 10: Discovery response [8]
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Sine-Gaussian Correlation With a Time Weighted Average
The correlation was calculated using the time weighted average:
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Figure 12: Sine-Gaussian correlation with a time weighted average [7]
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Sine-Gaussian Correlation With an Intensity Weighted
Average

The correlation was calculated using an intensity weighted average:
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Figure 13: Calculated Correlation [7]
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Some Characteristics of 2nd Order Glauber Correlation
Functions
» Coherent light of a single frequency [9, 10] is defined as
g*(r) =1.
» For a laser g?(7 = 0) = 2 for chaotic light [11].
» ¢2(7 = 0) > 1 for most signals except e.g. steady and
bunched [9, 10].
» For chaotic light ¢(7) = 0 as 7 — oo, [6].
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Figure 14: Two chaotic and one coherent signal's second order Glauber
correlation [6]
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Questions
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Figure 15: Discovery response [8]
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