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Abstract: Earth observation provides timely and spatially explicit information on crop phenology 

and vegetation dynamics that can support decision making and sustainable agricultural land man-

agement. Vegetation spectral indices calculated from optical multispectral satellite sensors have 

been largely used to monitor vegetation status. Besides, techniques to retrieve biophysical parame-

ters from satellite acquisitions, like the Leaf Area Index (LAI), allowed to assimilate Earth observa-

tion time series in numerical modelling for the analysis of several land surface processes related to 

agroecosystem dynamics. More recently, biophysical processors used to estimate biophysical pa-

rameters from satellite acquisitions have been calibrated for the retrieval from sensors with different 

high spatial resolution and spectral characteristics. Virtual constellations of satellite sensors allow 

the generation of denser LAI time series, contributing to improve vegetation phenology estimation 

accuracy and consequently enhancing agroecosystems monitoring capacity. This research study 

compares LAI estimates over croplands using different biophysical processors from Sentinel-2 MSI 

and Landsat-8 OLI satellite sensors. Results are used to demonstrate the capacity of virtual satellite 

constellation to strengthen LAI time series to derive important cropland use information over large 

areas. 
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1. Introduction 

Earth observation timely and spatially explicit information on land surface processes, 

like vegetation dynamics, represents an advanced digital agriculture tool to derive im-

portant cropland use information over large areas, supporting decision making and sus-

tainable agricultural land management. Biophysical parameters, as compared with the 

vegetation spectral indices calculated from optical multispectral satellite sensors, that 

have been largely used to monitor vegetation status, allows to quantitatively measure 

vegetation properties. The Leaf Area Index (LAI), a biophysical index defined as one half 

the total green (i.e., photosynthetically active) leaf area per unit horizontal ground surface 

area, can be estimated from surface reflectance data acquired by satellite sensors. Vegeta-

tion biophysical characteristics, as the canopy structure and photosynthetic capacity, are 

well described by LAI, that is largely used in agricultural studies [1].  

LAI information is widely adopted for crop monitoring and for numerical modelling 

applications [2], to derive phenological metrics [3], identify and map the main crops types 

[4], as well as demonstrated to be effective to monitor vegetation dynamics [5] and to map 

terrestrial natural habitats [6]. 

A number of techniques, evolved in the past to derive the biophysical variables of 

vegetation using remote sensing data, can be grouped into four categories [7]: (i) para-

metric regression methods; (ii) non-parametric regression methods; (iii) physically-based 
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methods, using Radiative Transfer Models (RTMs); (iv) hybrid retrieval methods, com-

bining non-parametric and physically-based approaches.  

During the last decades, satellite optical multispectral sensors sensed Earth surface 

either at medium spatial resolution and high revisit frequency or at high spatial resolution 

and low revisit frequency. Recently, Copernicus Sentinel-2 satellite constellation, 

equipped with MSI sensor, allows to sense Earth surface at high spatial, spectral and tem-

poral resolutions, expanding capacity for vegetation status and plant phenology monitor-

ing from time series of biophysical parameters. 

The aim of this study is to compare LAI estimates from Sentinel-2 MSI and Landsat-

8 OLI satellite data over croplands and other vegetation cover types in a selected test area, 

using different biophysical processors available in SNAP software, that belong to physi-

cally-based estimation methods. Simple linear regression analysis is used to determine 

linear relationship between different LAI estimates, coefficients and error metrics. 

2. Materials and Methods 

2.1. Satellite data 

Sentinel-2 (S2) satellites images, acquired from September 2017 to December 2019 

with cloud cover lower than 90%, were collected for granules ‘T32TPP’, whose spatial ex-

tent corresponds to the test site (Figure 1). The Multi-Spectral Instrument (MSI) sensor 

onboard S2 satellites is characterized by high spatial resolution (10 m, 20 m and 60 m), 

high revisit capacity (5 days with two-satellite constellation), and 13 spectral bands from 

the visible to shortwave infrared. Sentinel-2 MSI L2A data were collected from Theia ar-

chive, representing the bottom of the atmosphere (BOA) reflectance, orthorectified, ter-

rain-flattened and atmospherically corrected with MACCS-ATCOR Joint Algorithm 

(MAJA) [8].  

 

Figure 1. Main vegetation cover in the study area (Italy). 

After resampling all spectral bands to 10 m resolution, pixels corresponding to 

clouds, cloud shadows, snow, water in the product quality flag masks or corresponding 

to topographic shadows (identified by product quality flags representing the topographic 

mask and low-sun mask, with the latter considering the pixel aspect, slope, and sun zenith 

angle) were masked out from further analysis. 

Landsat8 (L8) satellites images, acquired from September 2017 to December 2019 

with cloud cover lower than 90%, were collected for tiles ‘T192030’ and ‘T193029’, which 

overlay the S2 granule selected as a test site. The Operational Land Imager (OLI) sensor 
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onboard L8 satellite is characterized by high spatial resolution (30 m), medium revisit ca-

pacity (16 days), and 9 spectral bands from the visible to shortwave infrared. Landsat8 

OLI Collection 2 data were collected from USGS archive, representing the top of the at-

mosphere (L1TP) and bottom of the atmosphere (L2SR) reflectance, orthorectified, terrain-

flattened and atmospherically corrected. Pixels corresponding to clouds, cloud shadows, 

snow, shadows, water in the product quality flag masks were masked out from further 

analysis. Bottom of atmosphere reflectances (L2SR), after being stacked with sun and view 

angles L1TP (using the SNAP processing graph available at https://github.com/ffilip-

poni/SNAP_L8_C2_BiophysicalLandsat8Op), were correct for changes in illumination 

due to terrain elevation [9]. 

 

Figure 2. Spatially explicit linear regression results: (a) linear regression coefficient; (b) linear re-

gression intercept; (c) coefficient of determination; (d) spatial detail of linear regression coefficient 

over plain croplands; (e) spatial detail of linear regression coefficient over hilly croplands. 

2.2. Biophysical parameters estimation 

Leaf Area Index (LAI) was estimated from surface reflectance data using the biophys-

ical processors [10] available in SNAP software version 8, based on trained neural net-

works, recently updated to version 3.0 with newly calibrated coefficients. Apart from re-

calibrated coefficients, the newly introduced features are the support for L8 OLI sensor, 

the optional use of S2 spectral bands at 10 m spatial resolution only (specifically those at 

green (B3), red (B4) and near-infrared (B8) wavelengths), and the computation of the bio-

physical parameters by the use of spectral response of each satellite sensor. 
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2.3. Comparison of LAI estimates 

Three sets of LAI estimates (S2; S2 using the 10 m processor; L8) were stacked in large 

multidimensional datacubes, after applying an image co-registration step [11] do deal 

with weak spatial coherence of Sentinel-2 time series processed using processing baselines 

01.xx and 02.xx [12]. Copernicus Land Monitoring Service datasets were used to generate 

a vegetation land cover map, used for subsequent analysis. 

A linear regression model has been created for each combination of unique pairs from 

the three LAI sets, using the entire datacubes as dependent and independent variables. 

Model has been generated for both spatial and temporal dimensions, the latter without 

the use of an intercept value. Additionally, separate models have been created for the fol-

lowing land cover classes: all vegetated pixels; croplands; grasslands; broadleaved forest; 

needleleaved forest. Regression coefficients and coefficient of determination (R2) were 

computed for each model, together with Root Mean Square Error (RMSE). 

In order to perform the comparison between S2 and L8 LAI estimates, S2 datacubes 

were resampled to fit 30 m spatial resolution, using average resampling statistics, and 

only synchronous acquisitions were used.  

All the procedures used to analyse data were performed using GDAL libraries, R, 

GRASS GIS and SNAP software. 

3. Results and Discussions 

Spatially explicit linear regression results are shown in Figure 2. Croplands resulted 

in a regression coefficient close to 1, while forested areas resulted in higher intercept value 

and consequently lower regression coefficient. High coefficient of determination values 

demonstrates the robustness of the linear regression model. 

 

Figure 3. Density scatterplot showing linear relationship for the three LAI sets. 

LAI biophysical processor calibrated on S2 spectral bands at 10 m spatial resolution 

overestimates LAI values, as compared with biophysical processor calibrated on S2 full 

spectrum and with biophysical processor calibrated on L8 (Figure 3). LAI estimates from 
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biophysical processor calibrated on L8 has strong linear relationship with LAI estimates 

from model calibrated on S2 full spectrum. These evidences demonstrate how red-edge 

and short-wave infrared spectral reflectances provide key information related to vegeta-

tion status, that complements plant photosynthetic activity revealed from visible and 

near-infrared wavelengths. 

 

Figure 4. Density scatterplot showing linear relationship for LAI estimated using the two Sentinel-

2 MSI models calibrated on different band sets for main land cover classes: (a) croplands; (b) grass-

lands; (c) broadleaved forests; (d) needleleaved forests. 

LAI biophysical processor calibrated on S2 spectral bands at 10 m spatial resolution 

overestimates LAI values for the different plant functional types (Figure 4). Overestima-

tion has been found to be higher for grasslands and lower for needleleaved forests. Fur-

ther improvements require in situ measurements to complement the linear relationship 

analysis with the evaluation of accuracy metrics. 

 

Figure 5. LAI time series for a winter cereal pixel. 
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Plot in Figure 5 shows how LAI estimates from multiple satellite sensors, with unbi-

ased linear relationship, can constitute denser time series from virtual satellite constella-

tion, contributing to improve temporal analysis, like vegetation phenology estimation, 

and consequently enhancing agroecosystems monitoring capacity. Weak spatial coher-

ence of Sentinel-2 acquisitions over time requires an image co-registration procedure to 

be applied in order to reduce shaky time series [12]. 

3. Conclusion 

A comparison of LAI estimates from Sentinel-2 MSI and Landsat-8 OLI satellite data 

over croplands and other vegetation cover types, using different biophysical processor 

has been presented. Results from linear regression analysis demonstrates a general under-

estimation of LAI biophysical processor calibrated on S2 spectral bands at 10 m spatial 

resolution, as compared with biophysical processor calibrated on S2 and L8 full spectrum. 

The biophysical processor calibrated on the full spectrum provides stronger linear rela-

tionships between LAI estimated from S2 MSI and L8 OLI satellite sensors, encouraging 

the use of estimated biophysical parameters time series from virtual satellite constellation, 

to derive important cropland use information over large areas. 
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