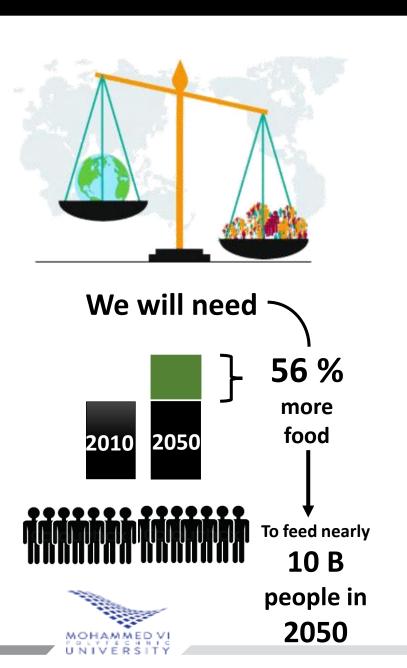


1111111

11111111

Efficiency of potassium and phosphate solubilizing Actinobacteria in wheat plant growth promotion

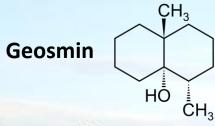


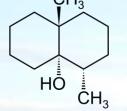
UNIVERSITÉ MOHAMMED VI POLYTECHNIQUE

Presenting by: Kenza BOUBEKRI- PhD Student

Team : Kenza BOUBEKRI , Abdoulaye SOUMARE, Ilham MARDAD, Karim LYAMLOULI, Mohamed HAFIDI, Yedir OUHDOUCH and Lamfeddal KOUISNI

HOW TO SUSTAINABLY FEED A GROWING POPULATION?

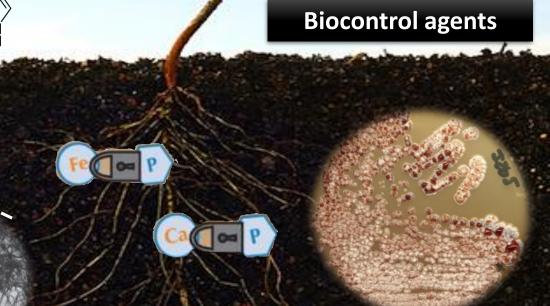

WHY ACTINOBACTERIA?


Well adapted for the agronomic application

Plant Growth promoting Traits

AIA production

HO'



Actinobacteria

- **Phosphate solubilization**
- **Potassium solubilization**
- Play an important role in nutrient cycling

Spore production → Survive in extreme environments

Antibiotic production

Objectives

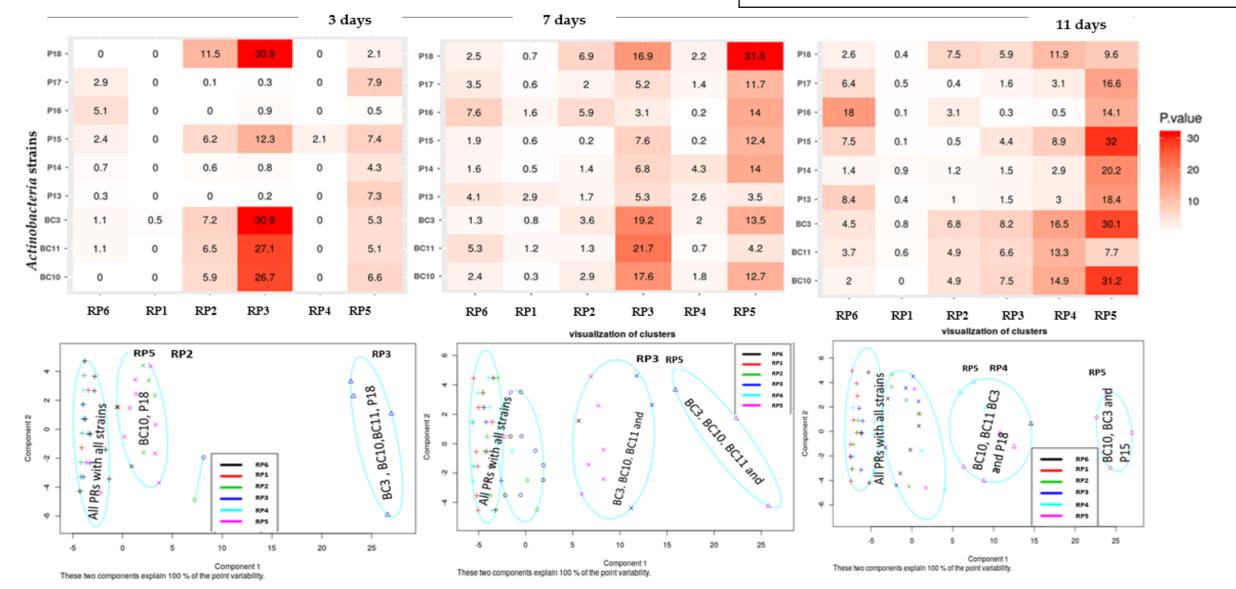
9 Actinobacteria strains isolated from desert soils

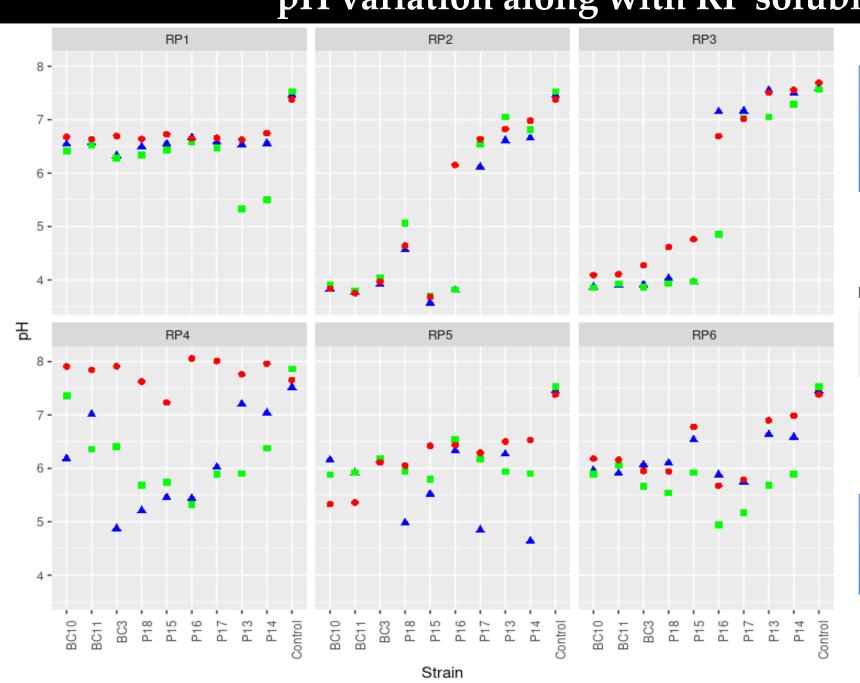
Abilities to solubilize potassium rock as well as 6 different rock phosphates qualities

Abilities to promote plant growth

Beneficial effect of Actinobacteria inoculation on wheat plant growth in greenhouse conditions

Strain's code	% Sequence identities	Actinobacteria strains			
P13	99 %	Streptomyces fulvissimus			
P14	99 %	Streptomyces youssoufiensis			
P15	99 %	Streptomyces microflavus			
P16	99 %	Streptomyces anulatus			
P17	99 %	Streptomyces pratensis			
P18	99 %	Streptomyces alboviridis			
BC3	100 %	Streptomyces griseorubens			
BC10	99 %	Streptomyces griseorubens			
BC11	100 %	Nocardiopsis alba			
-					





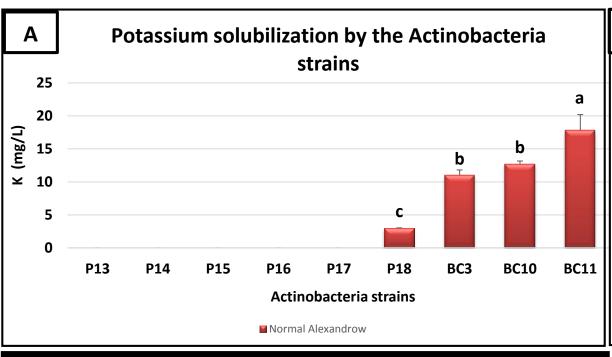
Abilities of Actinobacteria strains to solubilize 6 rock phosphate qualities

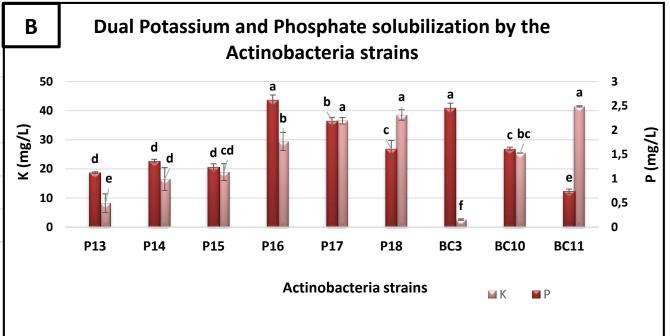
- Maximum solubilizing capacity after 11 days
- Rock phosphates solubilization by Actinobacteria strains ranged from 0.1 to 32 mg/L
- P18 BC3 BC10 and BC11: Most performing strains
- Broad RP solubilization spectrum
- **RP5** is the best RP in term of solubilization

pH variation along with RP solubilization

The pH variation was dependent upon both the RP types and the strain used

Date


3 Days


7 Days

11 Days

Involvement of organic acids ?

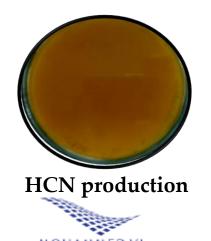
Potassium rock solubilization

Maximum potassium solubilization: 17.8 mg/L by BC11

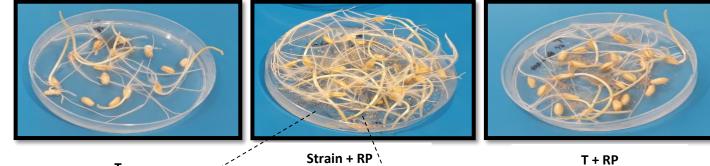
Maximum Potassium solubilization : 41.5 mg/L by BC11

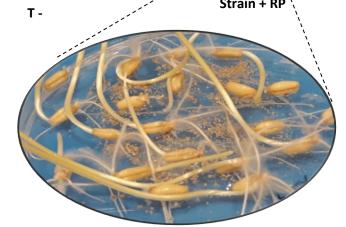
Maximum potassium solubilization was recorded in the modified Alexandrov

BC11 → The best performing Actinobacteria in both conditions


Plant Growth Promoting Traits of Actinobacteria strains

AIA production

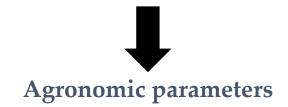



Siderophores production

Wheat germination test

Great number of root hairs

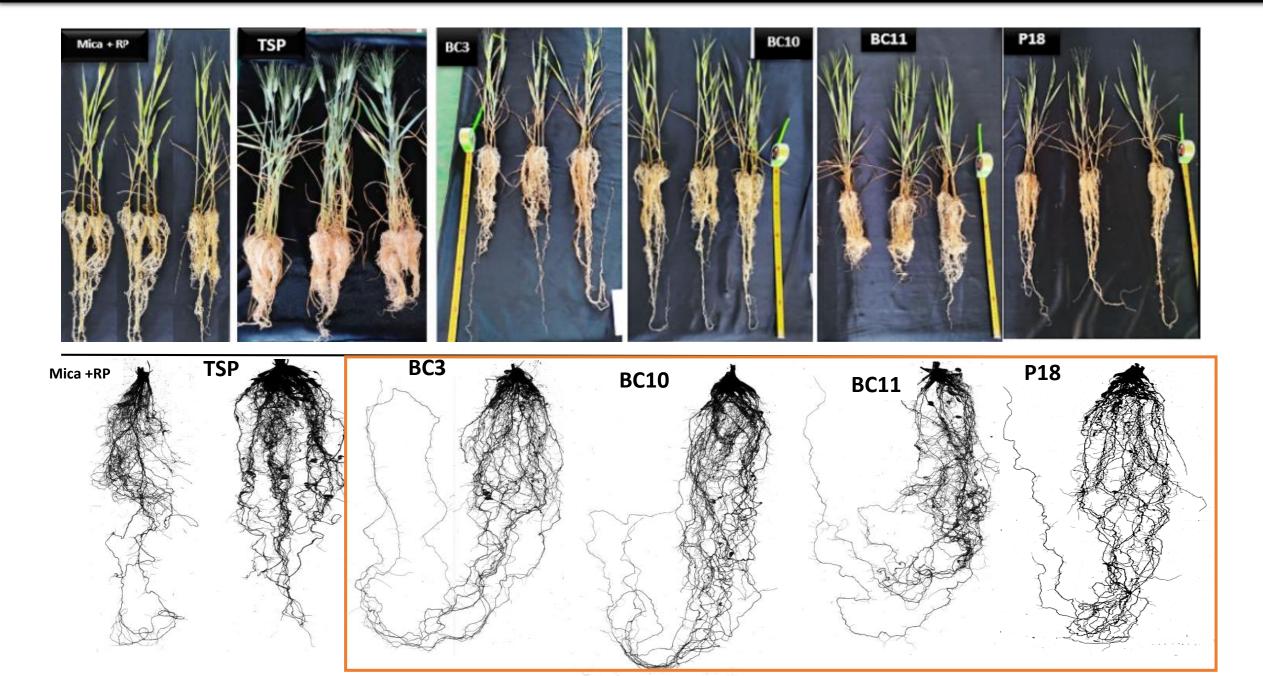
The most performant ones P18- BC3 –BC10 and BC11


Effect of the combinaison Actinobacteria -Rock phosphate and mica on wheat plant growth

4 potent strains: P18 -BC3 -BC10 and BC11

- **Plant:** Wheat
- Culture substrate: Alcalin soil
- 8 Treatments with 5 replications: 40 pots
- 4 seeds / pots
- 4 g of RP in each pot (1Kg)
- Mica = 4 g / pot
- Hoagland (1/2) / week
- Distilled water each 48 h
- Duration: 2 Months
- **Positive control:** T+ (Containing the K and P sources)

T-	T(Mica)	P18	ВСЗ	BC10	BC11	RP	T+
T-	T(Mica)	P18	всз	BC10	BC11	RP	T+
T-	T(Mica)	P18	всз	BC10	BC11	RP	T+
T-	T(Mica)	P18	вс3	BC10	BC11	RP	T+
T-	T(Mica)	P18	ВС3	BC10	BC11	RP	T+



- Plant height
- Root and shoot weight / Shoot and root dry weights
- Root architecture using WinRhizo
- P and K content in the soil / roots and shoots

Results

Actinobacteria strains enhance all the agronomic parameters of wheat

Effect of Actinobacteria inoculation on biomass yield and root traits of wheat

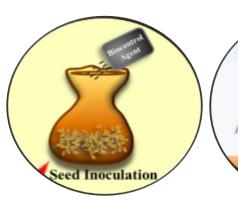
Treatments	Shoot length (cm)	Root length (cm)	Shoot dry weight (g /plant)	Root dry weight (g/plant)	Root volume (cm³)
C-	$23.85 \pm 0.96 d$	46.15 ± 2.57 c	$0.2355 \pm 0.03 d$	0.273 ± 0.042 c	1.12 ± 0.12 e
C+ (TSP)	60 ± 2.96 a	48.12 ± 6.12 bc	3.22 ± 0.35 a	1.154 ± 0.315 a	2.93 ± 0.420 ab
Mica	55.95 ± 1.95 a	49.56 ± 6.24 bc	2.51 ± 0.381 b	1.717 ± 0.407 a	3.131 ± 0.06 a
C (Mica + RP)	32.775 ± 1.77 c	56.32 ±7.41 ab	0.507 ± 0.085 cd	0.29 ± 0.45 bc	1.335 ± 0.255 cde
RP	32.75 ± 3.15 c	50.59 ± 7.70 bc	0.399 ± 0.08 cd	0.282 ± 0.064 bc	$1.33 \pm 0.18 de$
P18	$36.55 \pm 2.60 \mathrm{bc}$	57.31 ± 5.06 ab	0.520 ± 0.03 cd	0.426 ± 0.066 bc	1.937 ± 0.2 bcde
BC3	35.7 ± 2.74 bc	68 ± 8.79 a	0.574 ± 0.083 cd	0.45 ± 0.046 bc	2.289 ± 0.68 abcd
BC10	40.5 ± 6.087 b	67.22 ± 9.15 a	0.82 ± 0.12 c	0.761 ± 0.147 b	2.192 ± 0.417 abc
BC11	39.45 ± 3.09 b	69.75 ± 1.68 a	0.84 ± 0.06 c	0.528 ± 0.049 bc	1.89 ± 0.302 cde

→ Highest shoot and root lengths

→ Highest shoot and root dry weights

- **→** Coarse root architecture
- → The most performant ones in term of IAA production

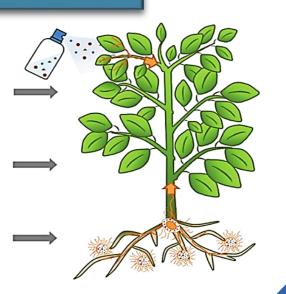
BC10 and BC11



9 Actinobacteria

Abilities to solubilize Potassium as well as different qualities of rock phosphates

Plant Growth Promoting Traits


Abilities to promote maize under rock phosphate fertilization in greenhouse condition

BC10 and BC11

Thank you for your attention

