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Abstract: Satellite Earth Observation provides timely and spatially explicit information on crop phe-

nology that can support decision making and sustainable agricultural land management. Accurate 

classification and mapping of croplands is a primary information for agricultural assessment. This 

study presents a digital agriculture approach that integrates Earth Observation big data analytics 

based on machine learning technologies to classify and map main crop types. Two supervised ma-

chine learning models were calibrated using Random Forests algorithm from phenological metrics, 

estimated from NDVI and LAI vegetation indices time series calculated using Sentinel-2 MSI satel-

lite acquisitions. Models were calibrated for the Toscana region in Italy. Results show a satisfactory 

overall accuracy (~78%) in croplands classification, and that model calibrated using LAI time series 

performs slightly better than the model calibrated using NDVI time series. The proposed approach 

offers a potential to accurately map crop types useful to support agricultural land management and 

monitoring systems for large areas over time. 
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1. Introduction 

Cropland mapping is becoming increasingly important in environmental topics 

which deals with sustainable agriculture production and natural resources management 

[1]. Nowadays, a wide number of stakeholders is interested in this topic, such as national 

authorities, local environmental agencies, regional government and authorities, munici-

palities, universities and research centers, civil protection agencies, insurance companies, 

industries. Cropland mapping product answers the information need deeply felt by users 

in response to the growing interest shown by the European policies to climate change 

mitigation and adaptation and foster sustainable agricultural practices, especially today 

in the context of the European Green Deal strategy [2]. 

The information provided by increasing availability of Earth Observation (EO) data 

makes satellite images of paramount importance for identify, characterize and map crop 

typologies in both space and time dimensions by exploiting the radar backscatter and the 

optical response of vegetation [3,4]. The European Commission (EC) commitment to en-

courage the development of EO products, possibly taking advantage of Copernicus In situ 

Component, makes value-added information derived from satellites of primary im-

portance for supporting agricultural land management. Indeed, the EC has finally sanc-

tioned the use of Copernicus Sentinels data, integrated with EGNOS/Galileo, for the con-

trol and granting of Common Agricultural Policy (CAP) payments by local authorities, 

promoting the open data with a common data-sharing approach (Regulation (EU) 

746/2018). 
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Multitemporal satellite images have proven to be successfully used to estimate veg-

etation biophysical parameters and identify phenological patterns [5–7]. Recently, Coper-

nicus Sentinel-2 satellite constellation, equipped with MSI sensor, allows to sense Earth 

surface at high spatial, spectral and temporal resolutions, showing its potential for the 

estimation of vegetation parameters, such as phenological metrics (e.g., the start of season, 

the length of season, or the end of season) [7,8]. 

Many authors investigated the efficacy of spectral and biophysical time series indices 

to differentiate crop types [9,10]. Vegetation spectral indices have been and are still widely 

used to detect the status of vegetation (e.g., growth, health, and cover), the most popular 

of which is the Normalized Difference Vegetation Index (NDVI) [11]. However, NDVI has 

saturation as its limit at high values. On the other hand, vegetation biophysical character-

istics, as the canopy structure and photosynthetic capacity, are well described by the Leaf 

Area Index (LAI) largely used in agricultural studies in heterogeneous smallholder and 

fragmented agroecosystems [12,13]. 

Furthermore, the advances in analytical techniques, such as the machine learning al-

gorithms, enable dealing with fast and robust analysis applied to big data. Among these, 

the Random Forests (RF) is an ensemble learning classifier successfully used in vegetation 

classification applications, including crop mapping [7,10,14]. 

The aim of this study is to present a digital agriculture approach that integrates EO 

big data analytics, based on supervised machine learning model using temporal statistics 

and phenological metrics estimated from NDVI and LAI time series as predictors, to iden-

tify and map the main crops types. Performances of two supervised machine learning 

models, calibrated using RF algorithm for a study area in central Italy, are presented and 

discussed. 

2. Materials and Methods 

2.1. Study Area 

Tuscany region is located in central Italy and covers about 23,000 square kilometers. 

The climate ranges from the Mediterranean dry climate along the coastline to the Temper-

ate humid and wet climate in inland and northern areas of the region. Tuscany is mainly 

hilly (about 67%) and mountainous (about 25%), and it includes also some plains (about 

8%). The cultivated areas represent about 39% of the region mainly characterized by ara-

ble land, vineyards and olive groves. 

2.2. Satellite Images 

Sentinel-2 (S2) satellites images, acquired from November 2015 to October 2019 with 

cloud cover lower than 90%, were acquired for the 4 granules corresponding to the study 

area. The Multi-Spectral Instrument (MSI) sensor onboard S2 is characterized by high spa-

tial resolution (10 m, 20 m and 60 m), high revisit time (5 days with two satellites), and 13 

spectral bands from the visible to shortwave infrared. The spectral bands of the images in 

the MUSCATE format, distributed by Theia as the bottom of the atmosphere (BOA) re-

flectance, orthorectified, terrain-flattened and atmospherically corrected with MACCS-

ATCOR Joint Algorithm (MAJA) [15], were processed for spatial resampling at 10 m 

masked for invalid pixels (cloud, cloud_cirrus, cloud_shadow, topographic_shadow, 

snow, edge, sun_too_low). A static mask, generated from Copernicus Land Monitoring 

Service datasets, has been applied to mask out pixel not corresponding to croplands. 

2.3. Crop Types Maps 

The reference crop types maps used in this study were made available by the Tuscany 

Regional Agency for Agriculture (http://dati.toscana.it/organization/artea) for the years 

from 2016 to 2019. This study focused only on the main crop types of the arable land, 

excluding the permanent crops such as vineyards and olive groves. Selected crop typolo-

gies were grouped into 8 classes taking into account the temporal pattern of the crops in 
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the study area: winter cereals, clover and alfalfa, maize, sorghum, sunflower, rape, horti-

cultural crops, and soy. The centroid of each crop parcel polygon in the reference maps 

were used to query the raster predictors generated from satellite images. 

2.4. Time Series and Temporal Predictors 

Two vegetation indices were selected to derive the main crop types in the study area: 

the NDVI and the LAI. The NDVI was calculated following the Equation (1): 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 (1) 

where RED corresponds to S2 MSI spectral band B4 and NIR corresponds to S2 MSI spec-

tral band B8. The Leaf Area Index (LAI) is defined as half of the total green (i.e., photo-

synthetically active) leaf area per unit horizontal ground surface area. The biophysical 

processor [16] available in SNAP software was used to estimate the LAI from surface re-

flectance data. 

The vegetation indices time series were first gap-filled and daily interpolated using 

Stinemann algorithm [17], and later temporally smoothed using the procedure based on 

second order weighted polynomial fitting and the Whittaker smoothing, described in [18]. 

From NDVI and LAI time series, temporal statistics and phenological metrics, derived 

following Gu et al. [19], were calculated and used as temporal predictors in the classifica-

tion model (Table S1). 

All predictors with a Pearson correlation coefficient higher than 0.9 and a variance 

inflation factor (VIF) higher than 2.0 [20] were removed to avoid multi-collinearity. 

2.5. Random Forests Classification 

R package ‘mlr’ [21] was used to set the RF hyperparameters combination (i.e., mtry, 

min.node.size, ntree) through a 5-fold cross-validation with 20 repetitions and select those 

with the higher Cohen’s kappa coefficient. Tuned hyperparameters were used to calibrate 

classification models from NDVI and LAI predictors using R-package ‘ranger’ [22]. Vari-

ables importance for the final set of selected predictors used in the models was calculated 

using the Gini index. 

A stratified sampling method was applied to the crop type reference map of the year 

2019 in order to select the pixels which represent all 8 classes of crop types, and that can 

be used as training samples for the classification and as test samples to verify the accuracy 

of the classification obtained. The 70% of the pixels were used as training samples and the 

remaining 30% as the test samples. 

The results of the classifications obtained were evaluated by means of confusion ma-

trices according to the test samples. Overall accuracy (OA), producer’s accuracy (PA), 

user’s accuracy (UA), and Cohen’s kappa coefficient (K) were assessed. 

Finally, crop types map product for year 2019 was predicted using the calibrated su-

pervised machine learning models. 

3. Results and Discussions 

The RF hyperparameters tuning produced the following setting: mtry = 5, 

min.node.size = 2, ntree = 893 for NDVI, and mtry = 4, min.node.size = 3, ntree = 424 for LAI. 

The selected predictor variables reporting the higher Gini index were 13 for NDVI and 11 

for LAI (Table S1). 

Resulting spatial crop types map is showed in Figure 1. Regarding the classification 

obtained from the NDVI time series analysis, an overall accuracy of 78.6% was achieved 

with a Cohen’s kappa coefficient of 0.54 (Table 2). Some classes were more accurately clas-

sified than others, such as clover and alfalfa (UA = 91.1%; PA = 82.8%), maize (UA = 69.5%; 

PA = 58%), and winter cereals (UA = 55.9%; PA = 69.2%). On the contrary, the sorghum 
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was classified worst (UA = 6%; PA = 26.8%). Rape and soy obtained low user’s accuracy 

(17.2% and 17.6% respectively). 

As for the classified crop types resulting from the LAI time series analysis, an overall 

accuracy of 78.3% was attained with a Cohen’s kappa coefficient of 0.59 (Table 3). Differ-

ently from the NDVI model results, the LAI model generally showed high user’s and pro-

ducer’s accuracies for all the classes, except for rape (UA = 10.7%) and the misclassification 

was with winter cereals principally. 

 

Figure 1. Crop types map of year 2019 for the area of the city of Pisa (Tuscany, Italy). 

Notwithstanding the overall accuracies and Cohen’s kappa coefficient are similar for 

both the NDVI and the LAI model, comparing the results for individual classes, the latter 

showed slightly higher performances. 

High misclassifications of horticultural crops may be related to different seeding time 

of the horticultural species, that could increase the variability in terms of predictors values 

range. With respect to soy and rape, it should be noted that the small number of reference 

crops used for model calibration and validation could be the reason for such a low classes 

accuracy. 

Table 2. Confusion matrix of RF result from the NDVI time series analysis. Producer (PA), user’s 

(UA), and overall (OA) accuracies in percentage as well as the Cohen’s kappa coefficient (K) are 

reported. 
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Table 3. Confusion matrix of RF result from the LAI time series analysis. Producer (PA), user’s 

(UA), and overall (OA) accuracies in percentage as well as the Cohen’s kappa coefficient (K) are 

reported. 

 

4. Conclusions 

The study demonstrates the EO big data analytics capacity to provide thematic prod-

ucts to support agricultural land management and fulfill users’ requirements. The pheno-

logical metrics estimated from high-resolution imagery sensed by Copernicus S2 satellites 

constellation, combined with thematic reference dataset related to crop types, together 

with the use of advanced computational analytic techniques (RF algorithm), allowed crop 

types mapping in heterogeneous, small, and fragmented agricultural systems. The cali-

brated NDVI and LAI supervised machine learning models show similar performances, 

with LAI model yielding better results. 

The supervised machine learning model, applied to a wider spatial extent, could con-

tribute to the sustainability measurement and assessment foreseen to the European Green 

Deal strategy, in terms of sustainable agricultural practices and environmental monitoring, 

climate change mitigation and adaptation, in accordance with the stakeholder require-

ments. 
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Winter cereals 3804 1609 4 2 8 24 44 0 5495 69.2

Clover and Alfalfa 2974 17084 53 45 36 29 410 0 20631 82.8

Maize 2 21 528 62 215 0 71 11 910 58

Sorghum 1 1 8 11 11 0 9 0 41 26.8

Sunflower 6 20 139 34 230 0 62 3 494 46.6

Rape 7 1 0 0 0 11 0 0 19 57.9

Horticultural crops 10 16 28 29 54 0 540 0 677 79.8

Soy 0 0 0 0 0 0 0 3 3 100

Total 6804 18752 760 183 554 64 1136 17 28270 OA%

UA % 55.9 91.1 69.5 6 41.5 17.2 47.5 17.6 OA% 78.6

Classification

K = 0.59
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Winter cereals 9759 2510 0 0 0 62 40 0 12371 78,9

Clover and Alfalfa 2170 7743 0 0 0 13 146 0 10072 76,9

Maize 0 0 19 5 4 0 2 1 31 61,3

Sorghum 0 0 4 20 1 0 2 0 27 74,1

Sunflower 0 0 3 0 12 0 0 2 17 70,6

Rape 13 0 0 0 0 9 0 0 22 40,9

Horticultural crops 5 2 0 5 0 0 428 1 441 97,1

Soy 0 0 0 1 1 0 0 3 5 60,0

Total 11947 10255 26 31 18 84 618 7 22986 OA %

UA % 81,7 75,5 73,1 64,5 66,7 10,7 69,3 42,9 OA % 78,3

Classification
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