

Entropy analysis of English n-grams

Objective
★ We estimate the n-gram entropies of English-language texts, using dictionaries and taking into account punctuation, and find a heuristic method for estimating the marginal entropy
★ We propose a method for evaluating the coverage of empirically generated dictionaries and an approach to address the disadvantage of low coverage
★ We compare the probability of obtaining a meaningful text by directly iterating through all possible n-grams of the alphabet and conclude that this is only possible for very short text segments
Methods
☑ Dictionaries of short length texts (n-grams) are
empirically generated on a corpus
☑ Theoretical coverage of empirical vocabularies, where
<i>K</i> is the initial dictionary volume, and <i>k</i> is the number of n-grams that occur once:
<i>K</i> is the initial dictionary volume, and <i>k</i> is the number of n-grams that occur once:
<i>K</i> is the initial dictionary volume, and <i>k</i> is the number of
<i>K</i> is the initial dictionary volume, and <i>k</i> is the number of n-grams that occur once: $coverage = (1 - \frac{k}{K}) \cdot 100 \%$ $\vec{K} = \frac{K}{1 - \frac{k}{K}}$
<i>K</i> is the initial dictionary volume, and <i>k</i> is the number of n-grams that occur once: $coverage = (1 - \frac{k}{K}) \cdot 100\%$ $\vec{K} = \frac{K}{1 - \frac{k}{K}}$
<i>K</i> is the initial dictionary volume, and <i>k</i> is the number of n-grams that occur once: $coverage = (1 - \frac{k}{K}) \cdot 100 \%$ If Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ If Entropy of n-grams (bits/character): $H_n = \frac{\log_2 K}{1 - \frac{k}{K}}$
K is the initial dictionary volume, and k is the number of n-grams that occur once: $coverage = (1 - \frac{k}{K}) \cdot 100 \%$ Image: Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ Image: Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ Image: Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ Image: Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ Image: Theoretical assessment of saturated vocabulary volume:Image: Theoretical assessment of satu
K is the initial dictionary volume, and k is the number of n-grams that occur once: $coverage = (1 - \frac{k}{K}) \cdot 100 \%$ Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ Entropy of n-grams (bits/character): $H_n = \frac{\log_2 K}{n}$ Length of text segmentInitial vocabulary coverageLength of text segmentInitial vocabulary coverage
K is the initial dictionary volume, and k is the number of n-grams that occur once: $coverage = (1 - \frac{k}{K}) \cdot 100 \%$ Image: Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ Image: Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ Image: Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ Image: Theoretical assessment of n-grams (bits/character): $H_n = \frac{\log_2 K}{n}$ Image: Theoretical assessment of text segment1051,35 %22 million
K is the initial dictionary volume, and k is the number of n-grams that occur once: $coverage = (1 - \frac{k}{K}) \cdot 100 \%$ Image: Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ Image: Entropy of n-grams (bits/character): $H_n = \frac{\log_2 K}{n}$ Length of text segmentInitial vocabulary coverage1051,35 %1532,33 %149 million
K is the initial dictionary volume, and k is the number of n-grams that occur once: $coverage = (1 - \frac{k}{K}) \cdot 100 \%$ Image: Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ Image: Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ Image: Theoretical assessment of saturated vocabulary volume: $\tilde{K} = \frac{K}{1 - \frac{k}{K}}$ Image: Theoretical assessment of n-grams (bits/character): $H_n = \frac{\log_2 K}{n}$ Image: Theoretical assessment of text segment1051,35 %22 million

Table 1. Coverage and vocabulary resizing

Anastasia Malashina HSE University, Moscow, Russia amalashina@hse.ru

Dataset

- Corpus is based on text samples from the **iWeb corpus of** English language
- Contains about **100 million characters** collected from web pages
- Alphabet of corpus includes only **29 characters**: the letters of Latin alphabet, space, dot and comma

Results

- Vocabularies of short English n-grams for length of 10,
- 15, 20, 25 characters (diagram 1)
- Coverage of empirical dictionaries and theoretical volume of saturated vocabularies (table 1)
- Extrapolation results of entropy per character based on a linear system (figure 2)
- Marginal entropy of web English is between 0,65 and **0,8** bits per symbol
- Approximate assessment of number of meaningful ngrams in a language can be found as:

$$\tilde{K}(n) = 2^{H \cdot n}$$

We have estimated the n-gram entropies of natural language texts and examined the number of meaningful texts in English. We have found that the empirical method of generating dictionaries can lead to significant type I errors in estimating the number of meaningful n-grams due to low coverage and eliminated this drawback by offering a method for refining the theoretical volume.

By extrapolating the data with a linear recurrent sequence, we have heuristically determined the limiting entropy of our corpus, which is 0.8 bits per character.

- dordrecht (2001)
- (1994)

HSE University

Conclusion

Bibliography

✓ J.Bellegarda, Robustness in statistical language modeling and speech technology, springer science+ business media

✓ L. Chase, R. Rosenfeld and W. Ward, Error-responsive modifications to speech recognizers: Negative n-grams, Third International Conference on Spoken Language Processing,

 \checkmark R. Rosenfeld, Optimizing lexical and n-gram coverage via judicious use of linguistic data, Fourth European Conference on Speech Communication and Technology, (1995)