(Generalized inference for the efficient
reconstruction of weighted networks

Federica Parisi, Tiziano Squartini, Diego Garlaschell

IMT School for Advanced Studies Lucca (Italy)

Introduction

Network reconstruction is an active field of re-
search. Among the methods proposed so far,
some assume that the binary and weighted
constraints jointly determine the reconstruction
output; others consider the weights estimation
step as completely unrelated to the binary one.
Amidst the former ones, a special mention is de-
served by the Enhanced Configuration Model;
the algorithms of the second group, instead, are
those iteratively adjusting the link weights on
top of some previously-determined topology.

Our method generalizes the traditional recon-
struction framework, by maximizing the condi-
tional Shannon entropy in a constrained fashion.
Our recipe satisfies the following requirements:

e it allows for any probability distribution
(over purely binary graphs) to be accept-
able as input for the preliminary topology
reconstruction step;

it allows for the generation of continuous
welghts, in order to let a real, unobserved

network to be generated with positive like-
lihood;

it satisfies the constraints that are usually
imposed by the availability of limited in-
formation (i.e. the out- and in-strength
sequences).

Conclusions

The knowledge of the structure of a financial
network gives valuable information for estimat-
ing the systemic risk. However, since finan-
cial data are typically subject to confidential-
ity, network reconstruction techniques become
necessary to infer both the presence of connec-
tions and their intensity. Recently, several “horse
races’ have been conducted to compare the per-
formance of these methods. Here, we establish
a generalised likelihood approach to rigorously
define and compare methods for reconstructing
weighted networks: the best one is obtained
by ‘dressing’ the best-performing, available bi-
nary method (i.e. the density-corrected Grav-
ity Model) with an exponential distribution of
weights.
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An overview of our reconstruction method
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Figure 1: Graphic summary of the reconstruction procedure.

Our method generalizes the traditional reconstruction framework, by maximizing the conditional
Shannon entropy
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in a constrained fashion. Upon imposing the normalization condition fWA Q(W|A)AW =1,VA € A
and the proper set of constraints » , ., P(A) fWA Q(W|A)C,(W)dW = C* ¥V «, the conditional,

exponential distribution
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is recovered. Its conditioning is on a set of binary configurations that represents the a prior: available,

topological information. The solution to the aforementioned problem, in the case of continuous
weights, reads
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for each positive weight w;;, showing that each pair-specific weight distribution conditional on the
existence of the link is exponential with parameter 37" + 31"

In order to estimate the parameters of the conditional distribution above, the likelihood-maximization
step needs to be generalied as well. To this aim, we consider the generalized likelihood functional
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whose optimization leads to the system of equations
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with fi; = > acp P(A)a;; = (as;) being the expectation of the binary random variable a;; under a
generic probability distribution.
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The framework above has been tested in a couple of particular cases, i.e. f;; = ——J— and
? 1)) 1_FZSQutS@n
@ J
fi; = a;;. The results are shown in the figure below.
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Figure 2: Test of the effectiveness of the CReMA model in reproducing the average nearest neighbors
strength (left panel) and the weighted clustering coefficient (right panel) for the World Trade Web in the
year 1990. The chosen probability distributions for the binary estimation step are the one defining the
density-corrected Gravity Model (red squares) and the one defining the actual configuration (blue triangles).
The latter choice perfectly recovers the observed values of the ANNS that lie on the identity line (drawn as
a black, solid line); the WCC is reproduced with a much higher accuracy as well.



