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Introduction

Network reconstruction is an active �eld of re-
search. Among the methods proposed so far,
some assume that the binary and weighted
constraints jointly determine the reconstruction
output; others consider the weights estimation
step as completely unrelated to the binary one.
Amidst the former ones, a special mention is de-
served by the Enhanced Con�guration Model;
the algorithms of the second group, instead, are
those iteratively adjusting the link weights on
top of some previously-determined topology.

Methods

Our method generalizes the traditional recon-
struction framework, by maximizing the condi-

tional Shannon entropy in a constrained fashion.
Our recipe satis�es the following requirements:

• it allows for any probability distribution
(over purely binary graphs) to be accept-
able as input for the preliminary topology
reconstruction step;

• it allows for the generation of continuous
weights, in order to let a real, unobserved
network to be generated with positive like-
lihood;

• it satis�es the constraints that are usually
imposed by the availability of limited in-
formation (i.e. the out- and in-strength
sequences).

Conclusions

The knowledge of the structure of a �nancial
network gives valuable information for estimat-
ing the systemic risk. However, since �nan-
cial data are typically subject to con�dential-
ity, network reconstruction techniques become
necessary to infer both the presence of connec-
tions and their intensity. Recently, several `horse
races' have been conducted to compare the per-
formance of these methods. Here, we establish
a generalised likelihood approach to rigorously
de�ne and compare methods for reconstructing
weighted networks: the best one is obtained
by `dressing' the best-performing, available bi-
nary method (i.e. the density-corrected Grav-
ity Model) with an exponential distribution of
weights.

References

[1] R. Mastrandrea, T. Squartini, G. Fagiolo, D. Gar-
laschelli. Enhanced reconstruction of weighted net-

works from strengths and degrees, New J. Phys. 16,
043022 (2014).

[2] T. Squartini, G. Caldarelli, G. Cimini, A. Gabrielli,
D. Garlaschelli, Reconstruction methods for net-

works: the case of economic and �nancial systems,
Phys. Rep. 757, 1-47 (2018).

[3] G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli,
A. Gabrielli, G. Caldarelli, The statistical physics

of real-world networks, Nat. Rev. Phys. 1(1), 58-71
(2019).

[4] F. Parisi, T. Squartini, D. Garlaschelli, A faster

horse on a safer trail: generalized inference for the

e�cient reconstruction of weighted networks, New
J. Phys. 22, 053053 (2020).

An overview of our reconstruction method
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Figure 1: Graphic summary of the reconstruction procedure.

Our method generalizes the traditional reconstruction framework, by maximizing the conditional

Shannon entropy

S(W|A) = −
∑
A∈A

P (A)

∫
WA

Q(W|A) lnQ(W|A)dW

in a constrained fashion. Upon imposing the normalization condition
∫
WA

Q(W|A)dW = 1, ∀A ∈ A
and the proper set of constraints

∑
A∈A P (A)

∫
WA

Q(W|A)Cα(W)dW = C∗α, ∀ α, the conditional,
exponential distribution

Q(W|A) =
e−H(W)

ZA
, W ∈WA

is recovered. Its conditioning is on a set of binary con�gurations that represents the a priori available,
topological information. The solution to the aforementioned problem, in the case of continuous
weights, reads

q(w|aij = 1) =

{
(βouti + βinj )e−(β

out
i +βin

j )wij w > 0

0 w ≤ 0

for each positive weight wij , showing that each pair-speci�c weight distribution conditional on the
existence of the link is exponential with parameter βouti + βinj .

In order to estimate the parameters of the conditional distribution above, the likelihood-maximization
step needs to be generalied as well. To this aim, we consider the generalized likelihood functional

G = −H(W∗)−
∑
A∈A

P (A) lnZA

whose optimization leads to the system of equationss
out,∗
i =

fij
βout
i +βin

j
, ∀ i

sin,∗i =
fji

βout
j +βin

i
, ∀ i

with fij =
∑

A∈A P (A)aij = 〈aij〉 being the expectation of the binary random variable aij under a
generic probability distribution.

The framework above has been tested in a couple of particular cases, i.e. fij =
zsout

i sinj
1+zsout

i sinj
and

fij = aij . The results are shown in the �gure below.
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Figure 2: Test of the e�ectiveness of the CReMA model in reproducing the average nearest neighbors
strength (left panel) and the weighted clustering coe�cient (right panel) for the World Trade Web in the
year 1990. The chosen probability distributions for the binary estimation step are the one de�ning the
density-corrected Gravity Model (red squares) and the one de�ning the actual con�guration (blue triangles).
The latter choice perfectly recovers the observed values of the ANNS that lie on the identity line (drawn as
a black, solid line); the WCC is reproduced with a much higher accuracy as well.


