

Department of Physics, University of Trento, Povo (TN), Italy

VAriable Resolution Algorithms for macro**MOL**ecular **S**imulations

Measurement and Minimisation of the Mapping Entropy of a Coarse-Grained Biomolecular System Marco Giulini, Roberto Menichetti, Raffaello Potestio

All-atom Molecular Dynamics (MD):

- Accurate **first-principles theory** for simulating biomolecules
- Numerical solution of Newton's equation of motion

Coarse-grained model Coarse-grained (CG) modelling:

- reduction Effective Ot degrees of freedom of a biomolecule
- mapping CG retains a subset of the original atoms
- Effective **CG** interactions

take into account the implicit presence of the removed atoms

Target of CG: Many-body potential of mean force

$$U^{0} = -k_{B}T\ln\left(V^{N}p_{R}(\mathbf{R})\right) + const.$$
$$p_{R}(\mathbf{R}) = \int d\mathbf{r} \ p_{r}(\mathbf{r}) \ \delta(\mathbf{M}(\mathbf{r}) - \mathbf{R})$$

 U^0 samples the CG probability distribution that would be sampled by the reference system observed through the CG mapping.

Fig.2 First-principles theory, approximate CG model and **MB-PMF form a right triangle in the space of models**.

How to construct good CG models?

Most CG methods focus on minimising d(PMF, CG)

BUT the quantity we are interested in is the distance between the 'reality' (MD) and the model: d(FP, CG)**SO** we need an appropriate measure for the quality of CG mapping, that is

d(FP, PMF)

The mapping entropy

$$S_{map} = k_B \int d\mathbf{r} \ p_r(\mathbf{r}) \ln \left[\frac{p_r(\mathbf{r})}{\bar{p}_r(\mathbf{r})} \right]$$

Mapping optimization

- Kullback-Leibler divergence between the all-atom probability distribution and the one generated by the PMF
- Measures the error we make **when** we reconstruct the all-atom description from a coarse-grained representation

Fig.3 $\bar{p}_r(\mathbf{r})$ tries to reconstruct the correct high-res probability from the CG conf. space

- The space of CG mappings is huge 10^{1000} elements for common proteins)
- Decimation mappings are discrete quantities
- Simulated Annealing scheme

Output: **Informative CG** representations

Results

The atoms that are more likely conserved during the minimization of the mapping entropy are those that are essential for the

Conclusions

- The mapping entropy quantifies the **distance between a** 1. first-principles theory and the most accurate effective theory at low resolution
- A change of paradigm in CG modelling: the CG mapping is 2. an outcome of a Coarse-graining procedure
- Mapping entropy minimization can be used as a tool for the 3.

biological role of the molecule.

Fig.4 Probability of conserving atoms in the optimized mappings.

References

[1] An Information Theory-Based Approach for Optimal Model Reduction of Biomolecules M Giulini, R Menichetti, MS Shell, R Potestio *J. Chem. Theory Comput.* 2020, 16, 11, 6795–6813 [2] A deep graph network-enhanced sampling approach to efficiently explore the space of reduced representations of proteins F Errica, M Giulini, D Bacciu, R Menichetti, A Micheli, R Potestio

Frontiers in Molecular Biosciences 8, 136.

unsupervised analysis of MD simulations

Ongoing and Future work

Deep learning algorithms are employed to guarantee a substantial speed-up of the calculations [2]. Ongoing work involves the analysis of the relationship between the mapping entropy and other information theoretical quantities. Additionally, the dependency on the conformational space sampled by MD is under investigation.

Acknowledgements

This project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (Grant Agreement 758588).

