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Conclusions

1. The mapping entropy quantifies the distance between a
first-principles theory and the most accurate
effective theory at low resolution

2. A change of paradigm in CG modelling: the CG mapping is

an outcome of a Coarse-graining procedure
3. Mapping entropy minimization can be used as a tool for the

unsupervised analysis of MD simulations

Results

The atoms that are
more likely conserved
during the
minimization of the
mapping entropy are
those that are

essential for the

biological role of

the molecule. Ongoing and Future work

Deep learning algorithms are employed to guarantee a substantial

speed-up of the calculations [2]. Ongoing work involves the analysis of

low the relationship between the mapping entropy and other information

Fig.4 Probability of conserving atoms in the optimized mappings. theoretical quantities. Additionally, the dependency on the
conformational space sampled by MD is under investigation.

References

[1] An Information Theory-Based Approach for Optimal Model Reduction of Biomolecules AC k n OW I e d ge m e nts

M Giulini, R Menichetti, MS Shell, R Potestio |

J. Chem. Theory Comput. 2020, 16, 11, 6795-6813 This project received funding from the European RRNEE

[2] A deep graph network-enhanced sampling approach to efficiently explore the space of reduced Research Council (ERC) under the European ...,.:(
representations of proteins . . : :-:erc
F Errica, M Giulini, D Bacciu, R Menichetti, A Micheli, R Potestio Union’s Horizon 2020 Research and Innovation ..,....':::(é
Frontiers in Molecular Biosciences 8, 136. Programme (Grant Agreement 758588). coropean



