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Introduction. In our current work we are looking to use Spectral Entropy Figure 2. Climate Prediction Engine (CPE)

(based on normalized FFT harmonics squared amplitude) of Vostok CO2

data prediction via KFHB [1] as a measure of data complexity and Ice Core Data Prediction
stochastic distance from the maximum entropy of White Noise signal. In Ice Core Data Base Analvsis Fnoine
particular we define a novel idea of Spectral Entropy Ratio (Figure 5) as - _ — _ . ‘ s

a ratio between corresponding white noise entropy and the Vostok signal Vostok, EPICA, Greenland, Other | I fune and orvelation : _
entropy for various number of harmonics used. This ratio is compared to — : HI"“".h“““} T]‘;‘frk
KL Distance and Dissequilibrium Distance, and shown to be superior Original and Inserted Data Foints Frequency Analysis e e A
measure of KFHB.compIexny as it exhibits much large changes over Amplitade and Encrey ’,
number of harmonics used, compared to other two measures. Arrows CO2 Temperatre Entropy Analvsis SV arione Clhimate
(Figures 5 and 6) indicate effectiveness of KFHB with 7 harmonics with _ . : — Predictions
respect to the Entropy Ratio. The Ratio change in Figure 5 indicates Dust Methane o2 Sampling Time Analysis

“slowing down” for higher N hence the contribution of higher harmonics is

getting smaller and smaller. The other two distance measure are very —1 y

much flat over the whole range of number of harmonics.

CPE aims to predict future climate data (CO2, temperature, Methane,
etc.) based on Vostok or EPICA ice core data via Kalman Filter Harmonic
Bank (KFHB) which uses small nhumber of harmonics with the largest v.v

energy content, and with Spectral Entropy Ratio as a goodness measure. Fine Tuning

Predicaoon Errors

Figure 1. Vostok Ice Core CO2 and Temperature Data
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Figure 4. Kalman Filter Harmonic Bank CO2 Approximation, 7 Harmonics
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More higher harmonics are needed to capture local fast changes in
100 CO2. One can estimate these by judging the size of time period of
these changes and adding corresponding harmonics. But even with
%, (t/t — 1) = only 7 harmonics general long term signal behaviour is captured

Kalman Filter Harmonic Oscillator (KFHO)
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Similar results can be Description and Conclusions
Tt/ — 1';/ I 2(t/t — 1) obtained for other * Vostok historical climate data is shown in Figure 1.
| lce Core data such as * Figure 2 is a block diagram of our Climate Prediction
temperature and Engine (CPE) [1].
Kalman Filter Harmonic Bank (KFHB) Methane * In Figure 3 we have block diagram of single harmonic

KF Oscillator and a bank of KF's for N harmonics

* Figure 4 shows KF bank for N = 7, first 7 harmonics
with the highest signal energy [1].

Figure 5. KFHB Spectral Entropy Ratio and white Figure 6. White noise and Vostok data Spectral « Effectiveness of KFHB can be measured in time

noise distance measures vs numbe_r of harmonics Entropies vs number of harmonics domain using MAPE or other time based error

— ' — measures [1].

* In frequency domain there are also various ways for

64 64 assess effectiveness of KFHB based on number of

32 32 harmonics used

* Figure 5 indicates Spectral Entropy Ratio together
with two additional “distance” measures. The idea is to
find a measure which captures the best complexity of
the Vostok Data set compared to an underlying white
noise process with the same number of spectral
harmonics. Larger the range of values of these
measures, the better it is a measure to determine
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* Figure 6 shows White Noise as well as Vostok data
spectral entropies for reference

 Tables 1 and 2 are numerical values for Figures 5 & 6

* Afull description of the paper is in preparation. We are

Table 1. Numerical values for Figure 5. Table 2. Numerical values for Figure 6. planning to fully analyse other ways to employ
Spectral Entropy as a measure of goodness of KFHB

KFHB consists of N harmonics with frequencies w1l ... wN

7/ Harmonics Approximation in Figure 4 7 Harmonics Approximation in Figure 4

s@=Entropy Ratio ==L Distance s@=DissEquilibrium w@=Spectral Entropy WN Entropy

No of Entropy | KL Diss- Spectral | White data estimates [2]
Harmonics | Ratio | Distance | Equilibrium Entropy | Noise . . .
" - . - in Entropy Entropy * We will also look into other types of relational
Noof H's | BITS in BITS Ratio entropies, such as, for example, Spectral Cross
3.655731 | 0.983341 | 0.41040579 1 0 0 0 Entropies and the corresponding coefficients to
>.346831 | 2.271951 | 0.63875172 2 0.273543 1 3.655731 capture informational relationship between CO2 and
6.796865 | 3.283705 | 0.73944005 ; g'ii‘;gi . E;SEE E?:ié temperature (or other ice core data) in one or more
7.103256 | 3.483447 | 0.75584176 o 0arraar | a S common data cycles, but also between different
8.763917 | 4.55109 | 0.81346438 ' | cycles [11,[2]
16 0.456417 il 8.763917 y ’ .
10.48351 | 5.521762 | 0.84222255 0 476030 . 10 48351 References
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DissEquilibrium from White Noise: Z[p(x) — 1/N] **2



