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Diffusion on narrow channels
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Diffusion on narrow channels

Mean square displacement
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Diffusion on narrow channels

Channels
When diffusion occurs in bounded systems, the slope of the MSD, i.e. the diffusion coefficient
is affected by boundaries
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Diffusion on narrow channels

Effective 1D projection method
For narrow channels, there is a method that projects the 2D motion to an effective
one-dimensional motion. From 2D diffusion equations:
∂

∂t
C(x, y, t) = Dx

∂2

∂x2
C(x, y, t) +Dy

∂2

∂y2
C(x, y, t),

we introduce the marginal distribution

c(x, t) =

∫ f2(x)

f1(x)
C(x, y, t) dy,

where fi(x) are the upper and lower boundaries of
the channel, such that the width function is
w(x) = f2(x)− f1(x).

After integration under reflecting boundary conditions, the so-called Fick-Jacobs
equation is obtained:

∂

∂t
c(x, t) = D0

∂

∂x
w(x)

∂

∂x

c(x, t)

w(x)
.

The entropic potential U(x) = − lnw(x) which contains effects of the shape of the
boundaries, is introduced.
Zwanzig propose an adjustment due to variations of the diffusion coefficient:

∂

∂t
c(x, t) =

∂

∂x
D(x)w(x)

∂

∂x

c(x, t)

w(x)
, (1)
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Diffusion on narrow channels

D(x) for 2D and 3D symmetric channels

Author 2D Channel 3D Tube

Jacobs (1967) D0 D0

Zwanzig (1992)
D0

1+ 1
12w

′(x)2
D0

1+ 1
2R

′(x)2

Reguera y Rubí
(2001)

D0
3
√

1+ 1
4w

′(x)2
D0√

1+R′(x)2

Kalinay y Percus
(2006)

D0
w′(x)

arctan
[
1
2w

′(x)
] D0√

1+R′(x)2

García-Chung,
Chacón-Acosta,

Dagdug
JCP (2015) JCP (2016)

Cuadro: D(x) for symmetric. Width function in 2D is w(x) and in 3D πR(x)2.
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Diffusion on narrow channels

D(x) for 2D and 3D asymmetric channels

Author 2D Channel 3D Tube

Bradley (2009)
D0

1+ 1
12w

′(x)2+y′0(x)
2 -

Berezhkovskii and
Szabo (2001)

D0

1+ 1
12w

′(x)2+y′0(x)
2

D0

1+ 1
2R

′(x)2+r′0(x)
2

Dagdug and Pineda
(2012)

D0
w′(x)

{
arctan

[
y′0(x) +

w′(x)
2

]
−

arctan
[
y′0(x) −

w′(x)
2

]} J. Cond. Matt. (2018)

Chávez,
Chacón-Acosta,

Dagdug
J. Cond. Matt. (2018) JCP (2018)

Cuadro: D(x) for asymmetric channels, the midline in 2D is y0(x) and in 3D is r0(x). Width
function in 2D is w(x) and in 3D πR(x)2.
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Diffusion on narrow channels

D(s) from the differential geometrical method

Different geometry methods show that when a tube has a constant cross-section, the
diffusion coefficient takes the following form in the corresponding limit cases.

Dκ(s) ' 2D0
1−

√
1− (Rκ)2

(Rκ)2
, .

For Rκ� 1a.

Dτ (s) ' D0

ln
(
1 + (Rτ)2

)
(Rτ)2

,

For Rτ � 1.

For a variable cross-section R 6= const.,
and when the channel has a twisted
midline, one hasb

D(s) ≈ D0

ln
(
1 +R′2 + (Rτ)2

)
R′2 + (Rτ)2

,

aOgawa PLA (2013).
bChávez, Chacón-Acosta, Dagdug, JCP (2018).
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Pattern formation on narrow channels

Pattern formation on narrow
channels
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Pattern formation on narrow channels

Turing mechanism for pattern formation
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Pattern formation on narrow channels

Turing mechanism for pattern formation

The Reaction-Diffusion system:

∂u

∂t
= ∇2u+ γf(u, v),

∂v

∂t
= d∇2v + γg(u, v),

where u y v are the species’ concentrations that diffuse and react according to the kinetics
f and g. Here d = Du/Dv and γ is the relative strength of the reactions. The problem
may have Neumann, Dirichlet, Robin, or periodic boundary conditions.

The stationary state of the system is (u0, v0), such that in the absence of diffusion
f = g = 0.

Under certain conditions of the values of the parameters, the system’s state becomes
unstable in the presence of diffusion.

Turing conditions for pattern formation:

trA = fu + gv < 0, detA = fugv − fvgu > 0,

dfu + gv > 0, (dfu + gv)2 − 4d(fugv − fvgu) > 0,

where the derivatives are evaluated in the steady-state (u0, v0).

The system is linearized around (u0, v0) and the polynomial λ(k) is the dispersion relation
whose roots give the range of unstable wavenumbers

k± =

√
γ

2d

(
(dfu + gv)±

√
(dfu + gv)2 − 4ddetA

)
, (2)

G. Chacón Acosta (UAM-C) Entropy of RD systems on confinement 12 / 23



Pattern formation on narrow channels

Parameter formation on channels1

Let us consider two chemical species (u, v) confined in a channel whose longitudinal
coordinate is larger than the transversal one. This system is then described by the Fick-
Jacob-Zwanzig operator Eq. (1), which is rewritten as a Fokker-Planck operator:

∂u(x, t)

∂t
=

∂

∂x

[
∂

∂x

(
D(x)u(x, t)

)
−
(
B(x)u(x, t)

)]
︸ ︷︷ ︸

−Ju

+γw(x)f
( u
w
,
v

w

)
, (3)

∂v(x, t)

∂t
= d

∂

∂x

[
∂

∂x

(
D(x)v(x, t)

)
−
(
B(x)v(x, t)

)]
︸ ︷︷ ︸

−Jv

+ γw(x)g
( u
w
,
v

w

)
, (4)

with the fluxes Ju, Jv and the advection coefficient

B(x) =
∂D(x)

∂x
+D(x)

∂ lnw(x)

∂x
.

By doing an expansion of the concentrations around the steady-state and a rescaling
of the coordinates as a function of D(x), it is then possible to obtain a linearized set
of equations for the perturbations that gives us a dispersion relation from where it is
possible to analyze the stability of the system1.

We study the well-known Schnakenberg kinetics f = γ(a− u+ u2v), g = γ(b− u2v).

1Chacón-Acosta, Núñez-López, Pineda, JCP (2020).
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Pattern formation on narrow channels

Funnel-like channel
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w(x) = A0 exp

(
− x2

2σ2

)
,

Harmonic oscillator potential,
with the shape parameter
1.5 (red) ≤ σ ≤ 6 (blue).

n∓ =
γσ2

2d

[
(dfu + gv)

∓
√

(dfu + gv)2 − 4d(fugv − fvgu)
]
.
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Pattern formation on narrow channels

Funnel-like channel
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Morphogen density u for Schnakenberg kinetics with a = 0.2, b = 0.5, d = 2.95, and γ = 100,
for different values of σ.
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Entropy production

Entropy production
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Entropy production

Entropy production

The entropy production rate of a reaction-diffusion system is given by the sum of two
components: chemical reactions and by diffusion

σ = σR + σD (5)

Chemical contribution. The entropy production rate per unit length due to chemical
reactions is as follows2

σR =
∑
i,j

SijJi ln

(
cj

c0j

)
, (6)

where Sij are the stoichiometric coefficient for the reaction, Ji is the i-th net chemical
reaction current, and cj , c0j are the concentration and its equilibrium value respectively.

The reversible part of the reactions is not considered to obtain Sij , which avoids the
thermodynamic study of pattern formation. However, we consider it as an
approximation to study the geometric effects in these types of expressions.

For the present reaction σR is

σR = γ
(
a+ b−

u

w

)(
ln

(
u

u0

)
+ ln

(
v

v0

))
, (7)

the total entropy production rate is the spatial integration of this term along the entire
length of the channel.

2Mahara et al. JCP (2004).
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Entropy production

Entropy production

Diffusion contribution. The entropy production rate per unit length due to confined
diffusion is3

σD = −
∑
i

JiFi, (8)

where Ji are the fluxes (3)-(4), and Fi the entropic driving force of each species.

For the present process σD is

σD =

(
∂u

∂x
− u

w′

w

)(
1

u

∂u

∂x
− u

w′

w

)
+ d

(
∂v

∂x
− v

w′

w

)(
1

v

∂v

∂x
− v

w′

w

)
,

σD = u

(
∂

∂x
ln
( u
w

))2

+ dv

(
∂

∂x
ln
( v
w

))2

. (9)

The entropy production of the entire system has proven to be a good scalar measure of
the dynamics of global pattern formation2. It is also related to the kind of diffusion in
the system, either parabolic or hyperbolic diffusion

σ̄ =

∫ L

0
dx σ(x, t).

3Carusela, Rubi, J Cond. Matt. (2018).
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Entropy production

Entropy production funnel-like channel
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Entropy production

Entropy production funnel-like channel
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Summary

Summary
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Summary

Summary

Confinement influences the diffusivity of the system.
Turing’s mechanism gives us the range of unstable modes where the
patterns can form for specific values of the parameters.
When the system is under confinement, both the range of unstable
modes and the pattern itself, change depending on the geometry of
the channel.
Also, the rate of entropy production grows faster as the width of the
channel increases.
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Summary

Gracias por su atención
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