<u>Can we predict arbuscular</u> <u>mycorrhizal inoculation effects</u> <u>on vine plants?</u>

Islem Hmida¹, Rubén Moreno-Díaz²Miquel A.J. Ribas², Josefina Bota^{2,3} and Elena Baraza^{2,3,*}

¹Universite de Sfax, faculte des Sciences de Sfax, Département des Sciences de la Vie, Sfax, Tunez; islem.hmida.2013@gmail.com

²Grupo de Investigación en Biología de las plantas en condiciones Mediterráneas, Departamento de Biología, Universidad de las Islas Baleares, Carretera de Valldemossa Km 7.5, 07122 Palma, Islas Baleares, España

³ Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA)

*Correspondence: elena.baraza@uib.es; Tel.: +34-971173177

⁺Presented at the 1st International Electronic Conference on Agronomy, 3–17 May 2021; Available online: https://sciforum.net/conference/IECAG2021

1.Introduction

Photo by Rubén Moreno-Díaz

Jacott, C. N., Murray, J. D., & Ridout, C. J. (2017). Trade-offs in arbuscular mycorrhizal symbiosis: disease resistance, growth responses and perspectives for crop breeding. *Agronomy*, 7(4), 75

1.Introduction

ARBUSCULAR MYCORRHIZAL FUNGI - AN ESSENTIAL TOOL TO SUSTAINABLE VINEYARD DEVELOPMENT: A REVIEW

Gheorghe Cristian Popescu *

Review Article | Published: 01 September 2015

Arbuscular mycorrhiza symbiosis in viticulture: a review

Sophie Trouvelot, Laurent Bonneau, Dirk Redecker, Diederik van Tuinen, Marielle Adrian & Daniel Wipf

Agronomy for Sustainable Development **35**, 1449–1467(2015) Cite this article **8653** Accesses **48** Citations **13** Altmetric Metrics

> Arbuscular Mycorrhizal Symbiosis as a Promising Resource for Improving Berry Quality in Grapevines Under Changing Environments

🐚 Nazareth Torres, 🎆 M. Carmen Antolín and 🎇 Nieves Goicoechea*

1.Introduction

Companies sell inoculums to improve vine cultivation

- Robust and resistant vines
- Optimized nutrient supply
- Increased plant growth
- High-quality yields
- Increased sugar and essence content

But, what can we learn from scientific experiments where vine plants where inoculted with arbucular mycorrhiza fungi?

2. Materials and Methods

 Articles published from 1980 to 2019 in the Google Scholar

 Keywords: mycorrhiza*, inocul*, vineyard*, rootstock*

We collected mean values of plant with and without mycorrhizal inoculation considering:

- Country
- Experimental conditions
- Rootstocks
- Mycorrizal Species
- Response variable

We calculated the Inoculation Dependency (ID), following the same calculation method than the mycorrhizal dependency [18].

Google

Scholar

ID (%) = 100 (Xi – Xn)/Xi

where Xi is the mean value of the response variable of mycorrhizal inoculated plant and Xn is the mean value of the response variable of nonmycorrhizal inoculated plant.

3. Results

23 publications,106 experiments359 comparison

ID> 20	56.27%
0 <id<20< td=""><td>27.86%</td></id<20<>	27.86%
ID≤0	15.88%

Greenhouse	76.92%
outdoor conditions	27.86%
Fiel conditions	15.88%

3. Results and discussion

- Only the number of leaves showed no negative values.
- There are important variability.
- Different rootstock-AMF combinations can generate an increase, but also a decrease in the same specific parameter such as leaf area.
- The same inoculum in the same plant can have a greater effect on specific parameters than others.

3. Results

- 50% of rootstock were study only in one experiment
- We can observe that the response of different rootstocks was very diverse.
- Two high stress resistant rootstock (110 Richter and 1103P) present some negative effect.
- The rootstocks showing the greatest positive effect on shoot dry weight were 3309C, SO4, and FPS91.

- It is observed that several species combination (Mix) shows a slightly more positive effect with respect to the rest of the experiments where species of the same genera were used.
- Fungi species preferences toward rootstocks can also affect mycorrhizal efficiency. For example, *Glomus aggregatum*, seemed to have a higher affinity for 161-49 Couderc than 196-17 castel (Aguín et al . *Am. J. Enol. Vitic.* **2004**, *55*, 108–111).

5. Conclusions

- The effect of mycorrhizal inoculation in the vineyards is context-dependent. There are several works in which neutral and even negative responses of certain combinations of rootstocks, mycorrhizae and environmental conditions are shown.
- Our data indicate that resistant rootstocks could be less favored by inoculation, the mixture of several species of AMF could have more positive effects, while the species of the genus *Aculospora* more negative.
- This study has demonstrated the need for previous pilot tests to determine the effect of a specific mycorrhizal species on certain rootstocks in specific culture conditions before being able to advise its use.