# Corrosion of Post-Tension Tendons associated with Segregated Grout



Photos by courtesy of Lau et al.,2011 and Lau et al.,2016

Samanbar Permeh and Kingsley Lau Florida International University, Dept. of Civil & Environmental Engineering

CMDWC2021. May 17-19,2021

# Background

### **Corrosion of PT Tendon**

- Post-tensioned, PT, concrete bridge construction allows for a wide range of design possibilities.
- For bonded tendons, the high strength steel strand is stressed and encapsulated with grout that provides barrier protection against corrosion.
- However, there have been several cases of corrosion in Florida bridges related to:
  - Degraded protection at joints (moisture and chloride)
  - Development of void spaces due to the formation of bleed water

These issues have proven the importance of having good grout quality to extend the service life of bonded post-tensioned tendons.



Photos by courtesy of Lau et al.,2016

### **Grout Segregation**

 Recent cases involved low-bleed thixotropic grouts that developed physically and chemically deficient segregated grout characterized as moisture-rich, low cement content and high concentrations of sulfate and alkali ions.





✓ Corrosion observed in deficient grout containing high moisture and enhanced sulfate levels.

### **Sulfate Limits for Deficient Grout**

- Proposed 0.0007 g/g (7 ppm) as a nominal limit based on electrochemical activity of lab and field data considering discussions on the effects of solution pH (Permeh et al., 2019).
- Complications due to interdependencies of cement hydration, pH, chloride, sulfate, etc on passive film formation as well as practical methodologies to sample deficient grout.
- In grout specimens, rust was observed when values exceeded that 0.01 g/g (100 ppm).
- Florida Spec. FM 5-618
  0.003 g/g (30 ppm per method) sulfate limit. Commercially available grouts already meet this limit.



### **Electrochemical Techniques to Assess Corrosion**

- The corrosion activity in deficient grout was associated with elevated sulfate levels in alkaline pore water solutions.
- Electrochemical measurements to assess the role of sulfates.
- In general, open-circuit potentials provide indication of active or passive behavior of steel and the polarization resistance provides estimation of general corrosion rates.
- However, the observation of morphology of damage observed in the bridge tendons would suggest that localized corrosion can develop. Preliminary lab testing in sulfate solutions showed possibility for pitting to occur.
- *Potentiodynamic polarization* scans show development of pitting corrosion.





Pitting Corrosion, (Lau, 2011))

# **Electrochemical Techniques to Assess Corrosion**



#### **EN Test Settings**

LPR scan rate 0.1 mV/s PD scan rate (fwd 0.01 mV/s) (rev 0.1 mV/s)

- Laboratory test setup to assess steel corrosion in alkaline sulfate solution (pH range 12.6-12.7).
- Testing included
  - Open-Circuit Potential
  - Linear Polarization Resistance (LPR)
  - Anodic Potentiodynamic Polarization (PD)
  - Electrochemical Noise (EN)
- Test cell placed in an aluminum enclosure (Faradaic cage)
- LPR and potentiodynamic polarization measured with Gamry Ref600 potentiostat.
- EN measured with Gamry ESA410 data acquisition program.

### EN Test Settings- 1, 10, and 100 Hz acquisition rates.

| Sulfate      | I-E Stability | I-E Range    | E Channel | V Channel |
|--------------|---------------|--------------|-----------|-----------|
| Levels       |               |              | Range     | Range     |
| 0 to 20 g/L  | Fast          | 6 – 600 nA   | 300 mV    | 300 mV    |
| 30 to 50 g/L | Fast          | 600 nA       | 3 V       | 3 V       |
| 100 g/L      | Fast          | 600 nA -6 μA | 3V        | 3 V       |

### **Results of Electrochemical Measurements**



- The open-circuit potential of the steel showed electronegative potentials indicative of active corrosion at elevated sulfate concentrations in alkaline solution.
- The corrosion current density, correspondingly showed larger values.
- The results of anodic polarization tests showed a shift of the anodic current exchange density, resulting in larger corrosion currents. There were indications of metastable pitting in solutions at 10-20g/L Na<sub>2</sub>SO<sub>4</sub> and pitting at higher concentrations.

#### Electrochemical Noise (Transient Noise Events)



 More numerous and greater magnitude of noise potential and current events were observed with the higher concentrations of sulfates in alkaline solution.

#### Electrochemical Noise Spectral Analysis

- Electrochemical noise can be an effective measurement technique to assess the development of localized corrosion when utilizing appropriate antialiasing filters and instrument settings.
- Spectral analysis included potential and current power spectral density.
- Characteristics of transient noise events can be assess from the PSD.

$$q = \frac{\sqrt{\Psi_{I0} \times \Psi_{E0}}}{B}$$
 Characteristic charge  
$$f_n = \frac{B^2}{\Psi_{E0}}$$
 Characteristic frequency

$$I_{corr} = B \sqrt{\frac{\Psi_{I0}}{\Psi_{E0}}}$$
 Corrosion current

 $Z_n(f) = (\Psi_E(f)/\Psi_I(f))^{0.5}$  Noise impedance



#### **Electrochemical Noise Spectral Analysis**



- The characteristic charge had greater magnitudes at higher sulfate concentrations.
- The characteristic frequency decreased at higher sulfate concentrations.
- This would indicate that more frequent and larger anodic events developed at higher sulfate concentrations in alkaline environments.

#### Electrochemical Noise (Corrosion Rate)



- The corrosion current resolved from EN measurements was greater at elevated sulfate concentrations in alkaline solutions.
- The corrosion current resolved by linear polarization resistance measurements and by electrochemical noise technique were well correlated.

#### Micrographs of Steel Corrosion



### SUMMARY OF ELECTROCHEMICAL TECHNIQUES FOR ASSESSMENT OF SULFATES IN ALKALINE ENVIRONMENTS

- The *open-circuit potential* and *polarization resistance* gave general indication that steel corrosion can develop in alkaline sulfate environments.
  - Corrosion potentials dropped to electronegative potontials and
  - Corrosion currents increased at high sulfate concentrations.
  - Limits difficult to identify (Greater corrosion activity >10,000 ppm)
- The *anodic potentiodynamic polarization* measured showed conditions where steel passivity was retained, where metastable pitting can develop, and where pitting corrosion occurs.
  - Passive condition observed <2,000 ppm
  - Metastable pitting events developed 10,000-20,000 ppm
  - Pitting developed >30,000 ppm
- Electrochemical noise can be an effective measurement technique to assess the development of localized corrosion`
  - Characteristic charge increased and characteristic frequency decreased >10,000 ppm.
  - Resolved I<sub>corr</sub> by EN and LPR were similar.