1st Corrosion and Materials Degradation Web Conference (CMDWC-2021)

Corrosion behavior of Fe-based amorphous/nanocrystalline composite coating: correlating the influence of porosity and amorphicity

Sapan K. Nayak¹, Anil Kumar², Kuntal Sarkar³, Atanu Banerjee⁴, Tapas Laha⁵

^{1, 2, 5} Department of Metallurgical and Materials Engineering, IIT Kharagpur, India ^{3, 4} Research and Development Division, Tata Steel, Jamshedpur, India

Organized by

17-19 May, 2021

INTRODUCTION

Fe-based amorphous coating

- Excellent mechanical and corrosion properties
- Optimized properties → strength of amorphous structure and ductility of metallic substrate
- Can be applied to complex parts
- Inexpensiveness
- Poor plasticity → limited industrial application

H. X. Li et al., Prog. Mat. Sci. 103 (2019) 235-318

- Fe-based amorphous/nanocrystalline composite coating
- No issue with poor plasticity

Fe-based composite coating synthesized by thermal spraying

I. Synthesis of the coatings and the ribbons

Spraying parameters of HVOF process for deposition of coatings

Melt-spinning parameters for ribbons

Spray parameters	Coatings	Ribbons	Wheel speed (rpm)		
Spray parameters	Coating [30 g/min] Coating [50 g/min]	Fully amorphous	2100		
Oxygen flow rate (SLPM)	270	(FA-Rib)	2100		
Fuel gas flow rate (SLPM)	55-60	Partially amorphous (PA-Rib)	1400		
Air flow rate (SLPM)	460				
Carrier gas flow rate (SCFH)	15-18	Preparation of the	e different coatings		
Spray distance (mm)	150	effect of amorphous content and			
Powder feed rate (g/min)	30 50	porosity individual	lly on the corrosion		
Coating thickness (µm)	Coating thickness (µm) 150 ± 15		benavior of the sprayed coatings		

II. Electrochemical characterization

- Electrolyte: 3.5 wt% NaCl solution
- Potentiodynamic polarization study: scan rate of 0.5 mV/s after 1 h of immersion for stabilization of open circuit potential (OCP)
- EIS test (OCP): sinusoidal amplitude of 10 mV in the frequency range of 10⁵ to 10⁻² Hz
- Pontentiostatic test at 500 mV_{SCE}: passive film

III. Analysis of corroded samples

- Raman spectrometer (Co laser of 532 nm wavelength): compositional analysis
- Auger electron spectroscopy: depth profiling → effective sputtering rate of 1.8 nm min⁻¹

1st Corrosion and Materials Degradation Web Conference 2021

भारतीय प्रौद्योगिकी संस्थान खड़गपुर Indian Institute of Technology Kharagpur

Morphology of the synthesized ribbons and coatings

Composition: $Fe_{63}Cr_9B_{16}C_7P_5$, at. %

Sample	Porosity (vol.%)	
FA-Rib	-	
PA-Rib	-	
Coating [30 g/min]	4.9 ± 0.6	
Coating [50 g/min]	1.8 ± 0.4	

- Ribbons \rightarrow porosity free structure
- Coating _[30 g/min] → greater extent of molten particles and inferior intersplat bonding and higher amount of porosity than that of Coating _[50 g/min]

SEM images of the ribbons: (a) FA-Rib, (b) PA-Rib, and the coatings: (c-d) Coating [30 g/min] and (e-f) Coating [50 g/min]

S.K. Nayak et al., J. Alloys Compd. 849 (2020) 156624

Phase evolution in the ribbons and the coatings

XRD patterns of FA-Rib, PA-Rib and the coatings

S.K. Nayak et al., J. Alloys Compd. 849 (2020) 156624

Phase evolution in the ribbons and the coatings

- FA-Rib→ fully amorphous structure is confirmed
- Nanocrystalline phases dispersed in the amorphous matrix of PA-Rib and Coating [50 g/min]

TEM images of (a) FA-Rib, (b) PA-Rib and (c) Coating [50 g/min] with corresponding SAED patterns in insets depicting variation in amorphicity, and HRTEM micrographs of (d) FA-Rib, (e) PA-Rib and (f) the coating

S.K. Nayak et al., J. Alloys Compd. 849 (2020) 156624

Corrosion behavior: Potentiodynamic Polarization

Sample	E _{corr} (mV)	i _{corr} (µA.cm⁻²)	i _{pass} (µA.cm⁻²)	E _{pit} (mV)
FA-Rib	-344 ± 4	0.09 ± 0.01	0.26 ± 0.09	982 ± 4
PA-Rib	-501 ± 5 🕇	0.62 ± 0.10	114.7 ± 8.6 🕈	937 ± 6 🕈
Coating [50 g/min]	-524 ± 7	3.2 ± 0.4	386.5 ± 7.3	923 ± 5 🗸
Coating [30 g/min]	-567 ± 8	8.3 ± 0.6	873.4 ± 9.7	908 ± 9

S.K. Nayak et al., J. Alloys Compd. 849 (2020) 156624

भारतीय प्रौद्योगिकी संस्थान खड़गपुर Indian Institute of Technology Kharagpur

Corrosion behavior: Electrochemical Impedance Spectroscopy

Sample	R _f (kΩ.cm²)	R _{ct} (kΩ.cm²)	R _t (kΩ.cm²)	GOF (x10 ⁻⁴)
FA-Rib	16.2	246	262.2	5.5
PA-Rib	2.9	27.5	30.4	3.2
Coating [50 g/min]	1.6	3.3	4.9	2.3

S.K. Nayak et al., J. Alloys Compd. 849 (2020) 156624

1st Corrosion and Materials Degradation Web Conference 2021

 R_{f}

CPE_{ct}

R_{ct}

Corroded surface analysis

- FA-Rib→ pits in the nano-scale range at higher magnification
- PA-Rib→ uniformly distributed
 pits in the size range of 1-10 µm
- Coating→ selective dissolution, very large (>10 µm) and deep pits

SEM micrographs of the corroded surface: (a–b) FA-Rib, (c–d) PA-Rib and (e–f) the coating

S.K. Nayak et al., J. Alloys Compd. 849 (2020) 156624

Analysis of corrosion products

a) Raman spectra of the post-polarized ribbons and coating, (b) de-convoluted Raman spectrum of FA-Rib and (c–e) Raman spectra intensity distribution of the various products

- Relative fraction of protective phases (Cr₂O₃ and Fe_{2-x}Cr_xO₃): FA-Rib (0.79), PA-Rib (0.38) and the coating (0.21)
- Greater influence of reduced amorphicity than that of porosity on the formation of protective phases

S.K. Nayak et al., J. Alloys Compd. 849 (2020) 156624

Passive film analysis

AES concentration depth profiles of various elements obtained from passive films formed on the surface of (a) FA-Rib, (b) PA-Rib and (c) the coating and (d) Cr/Fe ratio in passive films of the samples

S.K. Nayak et al., J. Alloys Compd. 849 (2020) 156624

Correlation between corrosion behavior and microstructural features

Schematic illustration of the corrosion process during different periods of immersion in electrolyte

S.K. Nayak et al., J. Alloys Compd. 849 (2020) 156624

CONCLUSION

भारतीय प्रौद्योगिकी संस्थान खड़गपुर Indian Institute of Technology Kharagpur

PUBLICATIONS

Publications related to this work

- S.K. Nayak, A. Kumar, K. Sarkar, A. Banerjee and T. Laha, Mechanistic insight into the role of amorphicity and porosity on determining the corrosion mitigation behavior of Fe-based amorphous/nanocrystalline coating, *Journal of Alloys and Compounds* 849 (2020) 156624.
- S.K. Nayak, A. Kumar, K. Sarkar, A. Pathak, A. Banerjee and T. Laha, A study on the corrosion inhibition of Fe-based amorphous/nanocrystalline coating synthesized by high-velocity oxy-fuel spraying in an extreme environment, *Journal of Thermal Spray Technology* 28 (2019) 1433-1447.
- A. Kumar, S.K. Nayak, K. Sarkar, A. Banerjee, K. Mondal and T. Laha, Investigation of nano-and micro-scale structural evolution and resulting corrosion resistance in plasma sprayed Fe-based (Fe-Cr-B-C-P) amorphous coatings, *Surface and Coatings Technology* 397 (2020) 126058.
- P. Bijalwan, A. Kumar, S.K. Nayak, A. Banerjee, M. Dutta and T. Laha, Microstructure and corrosion behavior of Fe-based amorphous composite coatings developed by atmospheric plasma spraying, <u>Journal of Alloys and Compounds</u> 796 (2019) 47-54.

