

PASSIVE FILM EVOLUTION OVER 2.5 YEARS OF LEAN-DUPLEX STAINLESS STEEL REINFORCEMENTS EMBEDDED IN MORTAR CONTAINING CHLORIDES

1st Corrosion and Materials Degradation Web Conference
 Ulises Martin, Juan Bosch, Jacob Ress, Dr. D.M. Bastidas

DEPARTMENT OF CHEMICAL, BIOMOLECULAR AND CORROSION ENGINEERING

May 2021

CONTENT

- Introduction to Corrosion of Reinforced Concrete Structures
- Passive film of Stainless Steels
- Materials and Techniques
- Results and Discussion
- Conclusions

Introduction to Corrosion of Reinforced Concrete Structures

Time

Tuutti model for the corrosion of RCS

Tuutti, K. Corrosion of steel in concrete, PhD Thesis, Swedish Cement and Concrete Research Institute, Stockholm, 1982.

Cumulative damage

- Stages for the corrosion of RCS:
 - Initiation → Ingress of chlorides, carbonation,...
 - Activation → First
 dissolution of the passive
 film, pit nucleation
 - Propagation → Pit growth, cracking of concrete cover, spallation

Passive film of Stainless Steels

Pourbaix diagrams for chromium species in the ternary system of Fe-Cr-Ni at 25 °C from Puigdomenech et al.

Concrete has a 12.6 pH

Formation of Cr₂O₃ + FeCr₂O₄
 p-type semiconductors,
 reducing the defects inside the
 passive film as electrons flow from
 the solution to the film

Beverskog, B.; Puigdomenech, I. Pourbaix diagrams for the ternary system of ironchromium-nickel. *Corrosion* **1999**, *55*, 1077–1087, doi:10.5006/1.3283945.

Passive film of Stainless Steels

Ogunsanya, I.G.; Hansson, C.M. The semiconductor properties of passive films and corrosion behavior of stainless steel reinforcing bars in simulated concrete pore solution. *Materialia* **2019**, *6*, 100321, doi:10.1016/j.mtla.2019.100321.

Hakiki, N.E.; Montemor, M.F.; Ferreira, M.G.S.; Da Cunha Belo, M. Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel. *Corros. Sci.* **2000**, *42*, 687–702, doi:10.1016/S0010-938X(99)00082-7.

Passive film of Stainless Steels

Hakiki, N.B.; Boudin, S.; Rondot, B.; Da Cunha Belo, M. The electronic structure of passive films formed on stainless steels. *Corros. Sci.* **1995**, *37*, 1809–1822, doi:10.1016/0010-938X(95)00084-W.

Materials and Techniques

RE WE CE

Materials

Sample	С	Si	Mn	Р	S	Cr	Ni	Cu	Ν	Mo
LDSS 2001	0.028	0.65	4.19	0.023	0.010	20.07	1.78	0.08	0.129	0.22
LDSS 2304	0.019	0.35	0.81	0.029	0.010	22.75	4.32	0.31	0.138	0.29
AISI 304	0.023	0.28	1.41	0.034	0.023	18.07	7.93	0.33	0.050	0.22

Ordinary Portland Cement (OPC) with 0, 0.2, 2 and 4 wt.% Cl⁻

Electrochemical setting

LPR, EIS, CPP, Mott-Schottky

Equipment: Potentiostat/galvanostat Gamry Reference 600. Threeelectrode configuration cell setup. Saturated calomel electrode (SCE) as RE, and stainless steel mesh plus guard ring as CE.

Electrochemical standards: ASTM G-1-03, ASTM G61-86 and ASTM G3-14

Martin, U.; Bosch, J.; Ress, J.; Bastidas, D.M. Long-term stability and electronic properties of passive film of leanduplex stainless steel reinforcements in chloride containing mortar. *Constr. Build. Mater.* **2021**, *291*, 123319, doi:10.1016/j.conbuildmat.2021.123319

E_{corr} and **i**_{corr} **monitoring** over **912 days**.

All SS reinforcements **improve** their E_{corr} over time, increasing the potential towards more positive values, as the **passive film is growing**.

Similarly, the *i*_{corr} decreases or stabilizes and does not considerably change over the entire testing.

Nyquist plot of all SS reinforcements for **0** and **4 wt.% Cl**⁻.

The 0 wt.% Cl⁻ does not change the shape regardless of the time of exposure, only some minor decrease in impedance

The **4 wt.% Cl⁻ experiences** some small decrease in the impedance with time. However, the impedance values remain in the same order of as the **0 wt.% Cl⁻**.

Electric equivalent circuit (EEC) with three times constants and effective capacitance of the film ($C_{eff,film}$) and double layer ($C_{eff,dl}$).

$$C_{\text{eff,film}} = Y_{\text{film}} \left(\ddot{\omega}_{\text{m}} \right)^{n_{\text{film}} - 1}$$
$$C_{\text{eff,dl}} = \left[Y_{\text{dl}} \left(\frac{1}{R_{\text{s}}} + \frac{1}{R_{\text{ct}}} \right)^{(n_{\text{dl}} - 1)} \right]^{\frac{1}{n_{\text{dl}}}}$$

The University of Akron – College of Engineering ¹⁰

Thickness of the electrochemical double layer (d, nm)							
Day	LDSS	2001	LDSS	2304	AISI 304		
	0 wt.% Cl ⁻	4 wt.% Cl ⁻	0 wt.% Cl ⁻	4 wt.% Cl ⁻	0 wt.% Cl ⁻	4 wt.% Cl ⁻	
60	0.83	0.70	1.60	1.88	1.00	0.53	
100	0.88	0.55	1.33	1.12	0.69	0.25	
150	0.74	0.57	0.48	1.43	0.78	0.35	
340	2.81	0.50	0.31	0.78	0.76	0.34	
650	3.05	0.59	0.46	1.13	0.55	0.20	
912	1.15	0.48	1.18	1.35	0.46	0.32	

Thickness of the double layer based on the fitting parameters.

$$C_{\rm eff,dl} = \frac{\varepsilon_{\rm o} \, \varepsilon_{\rm film} \, A}{d}$$

Mott-Schottky and CPP plots of OPC with 4 wt.% Cl⁻ after 912 days for all SS reinforcements.

12 The University of Akron - College of Engineering

Mott-Schottky results of OPC with 4 wt.% Cl⁻ after 912 days c.

	Cl^-	$E_{ m FB,A}$	$E_{ m FB,D}$	$N_{ m A}$	N_{D}
	wt.%	V _{SCE}		cr	n^{-3}
	0	-0.51	-0.18	1.50×10^{15}	4.52×10^{15}
LDSS	0.4	-0.10	-0.22	9.05×10^{15}	1.13×10^{17}
2001	2	0.07	-0.42	1.29×10^{18}	1.29×10^{19}
	4	0.86	-3.61	1.51×10^{18}	2.26×10^{19}
	0	-0.31	-0.53	4.51×10^{16}	9.05×10^{16}
LDSS	0.4	-0.11	-0.50	4.52×10^{17}	1.13×10^{18}
2304	2	0.25	-1.20	1.50×10^{19}	1.51×10^{19}
	4	0.45	-1.17	9.05×10^{19}	2.26×10^{19}
	0	-0.32	-0.25	4.52×10^{15}	1.29×10^{16}
AISI	0.4	-0.19	-0.36	2.26×10^{17}	3.01×10^{17}
304	2	0.52	-0.42	4.52×10^{18}	3.02×10^{18}
	4	0.62	-1.81	1.13×10^{19}	1.01×10^{19}

XPS and **cationic fraction** section for all SS reinforcements.

Conclusions

- The i_{corr} values of all SS reinforcements were far below the corrosion limit threshold of 0.1 μ A/cm². Proving the outstanding corrosion performance of LDSS 2001 despite having the smallest Ni content
- The **impedance** for **all SS** reinforcements remained **above 100** k Ω **cm**² during the **912 days**, hence **no passivity breakdown** was shown.

- After 912 days both LDSS, 2304 and 2001, had Cr enrichment in their passive film, from 40 to 63% and from 44 to 61% cationic fraction respectively.
- The *E*_{FB,D} of LDSS 2001 rapidly shifts towards negative potentials, generating more oxygen vacancies and worsening the corrosion properties, as the Cl⁻ concentration increases.

Thank you for

your time!!