

1st Corrosion and Materials Degradation Web Conference 17-19 MAY 2021 | ONLINE

Unveiling the self-healing effect of cerium ions in PMMA-silica coatings on AA7075: A comparative study of Ce(III) and Ce(IV)

<u>Andressa Trentin,</u> Samarah V. Harb, Mayara C. Uvida, Peter Hammer

andressa.trentin@unesp.br São Paulo State University – UNESP, Brazil

PMMA-silica-Ce(III)/Ce(IV) coatings

- Hybrid coatings combine properties of polymeric and sol-gel materials
- Aluminum AA7075: widely used in aircrafts
- > 720 days of stability in 3.5% NaCl
- Thickness 5~ μm
- Ce(III) vs. Ce(IV): Role of the oxidation state in active corrosion inhibition

PMMA-silica-Ce(III)/Ce(IV) synthesis

Surface Morphology of PMMA-silica-Ce(III)/Ce(IV) – AFM and SEM

- Roughness in the nm range (0.3 to 6.7 nm)
- Higher Ce(IV) content: Increased R_{RMS}
- Absence of pores and cracks

Electrochemical response over time – EIS

- High low-frequency impedance modulus ~ 24 GΩ cm² in 3.5% NaCl
- Ce(IV)_05 and Ce(IV)_5: Increased lifespan due to self-healing activity

Electrochemical response over time – EIS

- Ce(IV)_05: Activity on pits of corrosion
- Suppression of the charge transfer process at the interface

Proposed mechanism – EIS and SIMS

 $C_2H_3O_2^+$ CeO⁺ Al+ 200 µm Cu⁺

200 µm

- Self-healing effect: formation of insoluble oxides/hydroxides
- CeO⁺ is formed preferentially in Cu⁺ (intermetallic of AA7075)

- Ce0 and Ce(III): decrease / similar |Z| after 7 days, respectively
- Ce(IV): recovery of $|Z| \rightarrow$ inhibitory effect

- Ce0: Al products \rightarrow main composition of the scratch
- Ce(III) and Ce(IV): correlation with Cu at the scratch edges

Active protection – SIMS

Ce(IV)_5

- Higher activity on intermetallic particles
- Correlation of CeO⁺ and Cu⁺ at the scratch track
- Leached Ce(IV) ions from adjacent walls formed a protective layer

Nanostructural analysis of silica and cerium nanoparticles – TEM

- Ce0 and Ce(IV)_05: homogeneous distribution
- Ce(IV)_3 and Ce(IV)_5: larger cerium oxide/hydroxide particles (30 - 100 nm)

Surface Chemistry of PMMA-silica-Ce(III)/Ce(IV) – XPS

- Ce(IV)_5: 64% of Ce(IV)
- Ce(III)_5: 41% of Ce(IV)
- Ce(IV) reacts faster with OH⁻ from oxygen reduction reaction

 \rightarrow insoluble oxides and hydroxides

 $\begin{aligned} Al(s) &\to Al^{3+}(aq) + 3e^{-} \\ \frac{Al^{3+} + 3H_2O \to Al(OH)_3 + 3H^{+}}{2H_2O + O_2 + 4e^{-} \to 4OH^{-}} \end{aligned}$

 $Ce^{4+} + 40H^{-} \rightarrow Ce(0H)_{4} \downarrow$ $Ce(0H)_{4} \leftrightarrow CeO_{2} + H_{2}O$

Current hypothesis

Thank you

