

Electrochemical response in biological media of Plasma Electrolytic Oxidation treated Additively Manufactured Ti6Al4V alloy

H. Mora-Sanchez*, M. Mohedano, E. Matykina, R. Arrabal

Characterization, Corrosion and Degradation of Advanced Materials CCRM group

1st Corrosion and Materials Degradation Web Conference

17-19 May 2021

OUTLINE

- 1. Introduction and objectives
- 2. Materials and experimental procedure
- 3. Results
- 4. Conclusions

1. Introduction and objectives

Additive Manufacturing

- Cost efficient on-site 3D manufacturing •
 - Dense parts
 - Mesh scaffolds
 - Patient-customized articles
- Biomedical-grade metallic materials: **Ti alloys** ٠

Laser Powder Bed Fusion

- i.e. Direct Metal Laser Sintering DMLS
- Layer-by-layer manufacturing
- Metallic powder melting
- High power laser as heating source

Hao, YL et al. Rare Met. 35. 661 -671 (2016).

al. Sci Rep 8, 750 (2018).

I.A.J. van Hengel et al. Acta Biomaterialia (2020)

M Ahmadi et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 293 012009

1. Introduction and objectives

Additive Manufacturing

- Cost efficient on-site 3D manufacturing
 - Dense parts
 - Mesh scaffolds
 - Patient-customized articles
- Biomedical-grade metallic materials: **Ti alloys**

Laser Powder Bed Fusion

- i.e. Direct Metal Laser Sintering DMLS
- Layer-by-layer manufacturing
- Metallic powder melting
- High power laser as heating source

M Ahmadi et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 293 012009

As-built microstructure acicular α'

Different mechanical and electrochemical behaviour to traditionally manufactured alloy

1. Introduction and objectives

Surface treatment – Plasma Electrolytic Oxidation - PEO

- Electrochemical high voltage surface modification technique
- Rough and porous ceramic coatings
- Dielectric breakdown \rightarrow Micro discharges
- Enhanced corrosion protection, adhesion and wear resistance
- Enhanced adhesion and wear resistance
- Osteoconductive coatings: Ca- and P-containing

A. Santos-Coquillat et. al., *Applied Surface Science*, 2020 https://doi.org/10.1016/j.surfcoat.2020.126317

Objectives of the study

• Fabrication of Ca- and P-containing thin (~ 10 μ m thickness) PEO coatings on a

Ti6Al4V alloy manufactured via Direct Metal Laser Sintering (DMLS)

• Study the electrochemical behaviour of bare and PEO treated AM alloy in a modified α -MEM solution

Materials

- Wrought mill-annealed Ti6Al4V Wrought
- DMLS Ti6Al4V AM
 - $\circ~$ Stress relief heat treatment: 650 °C 3 h
 - + Thermal treatment (α '→ α + β): 750 °C 3.5 h, furnace cooling
 - Orientation studied: XY

Potentiodynamic polarisation

- Modified α-MEM:
 - \circ NaCl 6.8 g/L
 - \circ CaCl₂ 0.2 g/L
 - $\circ \ MgSO_4 0.098 \ g/L$
 - $\circ \ KCl 0.4 \ g/L$
 - \circ NaHCO₃ 2.2 g/L
 - \circ Na₂HPO₄ 0.122 g/L
 - o pH: 7.4-7.6

Plasma Electrolytic Oxidation Electrolyte: $\circ C_6 H_{10} CaO \cdot 5H_2 O - 0.05 M$ \circ NaH₂PO₄·2H₂O - 0.055 M \circ NaOH – 0.025 M \circ Na₂(EDTA)·2H₂O - 0.15 M Voltage signal: $\circ +490 V - 30 V - V_{RMS} = 347 V$ \circ 300 Hz • Maximum current density: 0.3 A/cm^2 Treatment time: o 120 s • Onset of sparking: Visible sparking + 5 s

3. Results: 120 s PEO coatings

3. Results: Onset of sparking

20 um

3. Results: Potentiodynamic polarization

- The 120 s PEO coating on the Ti6Al4V AM alloy were similar in morphology and composition compared to the one fabricated on the conventional alloy
- Full PEO regime was reached earlier on the AM alloy
- Bare AM alloys presented severe pitting during electrochemical
- PEO coatings improved the corrosión resistance of both wrought and AM alloys