

Corrosivity of different natural groundwaters from repository sites

<u>Mervi Somervuori</u>, Elisa Isotahdon, Maija Nuppunen-Puputti, Malin Bomberg, Leena Carpén and Pauliina Rajala

03/05/2021 VTT – beyond the obvious

VTT

Introduction

- In Finland repositories of low and intermediate-level waste
- in deep bedrock
- near the nuclear power plants
- 60 to 100 m below the ground level

Introduction

- Carbon steel containers
- Waste contains both carbon steel and stainless steel
- The containers and waste will be subjected to natural groundwater
- Groundwater always contains microorganisms
- Composition of the water depends on the origin
- Different forms of corrosion depending on the local environment

Aim of this study

- To study corrosion properties in various water conditions corresponding to each repository site
- Water composition and microbiology of natural groundwater were determined
- Corrosion properties of one carbon steel and two stainless steels were studied by electrochemical measurements

EXPERIMENTAL

VTT

Experimental set up

- Three natural groundwaters and one simulated water was studied in anoxic conditions
- The simulated water was designed to mimic the water from location C
- Water composition was analysed and the pitting index calculated
- Microbial community sizes by quantitative PCR (qPCR)
- Electrochemical measurements to define
 - Corrosion potentials
 - Corrosion rates
 - Corrosion forms
- Characterisation of the steel specimens by SEM

Water Chemistry

- Corrosion is highly dependent on water chemistry
 - -> the water chemistry has important role in steel corrosion
- Chlorides and sulphates are known to cause corrosion
- Main chemical components of each water were analysed
- Physical parameters were determined
 - pH, O2, redox, conductivity
- Corrosivity of the water for carbon steel can be evaluated by calculating a pitting index
 - Value exceeding 1 predict pitting and localised corrosion

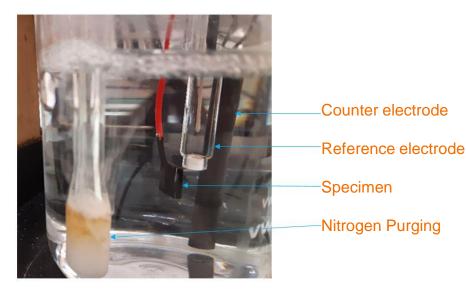
Microbiology

Bacterial, archaeal and fungal communities were studied

Community size by quantitative PCR (qPCR)
 Bacterial and archaeal 16S rRNA, fungal 5.8S rRNA, sulphate reducing bacteria (*dsr*B)

Community composition by amplicon library sequencing
 Bacteria/archaoa 16S rPNA, funci ITS

Bacteria/archaea 16S rRNA, fungi ITS


Steels used in the electrochemical measurements

- Cold-rolled low carbon steel AISI 1005 (UNS G10050)
- Two stainless steel similar to AISI 304 (UNS S30400) and AISI 316L (UNS S31603)

	С	Si	Mn	Р	S	Ni	Cr	Мо	V
AISI 1005*	0.025	<0.00 5	0.19	0.007	0.007	0.02	0.03	<0.01	0.002
AISI 304	0.037	0.42	1.54	0.027	0.002	8.47	18.1	0.13	0.056
AISI 316L	0.024	0.39	0.94	0.032	0.002	10.1	17.1	2.01	0.06

* N 0.002 %

Electrochemical measurements

Anoxic environment at room temperature

Open Circuit Potential measurements

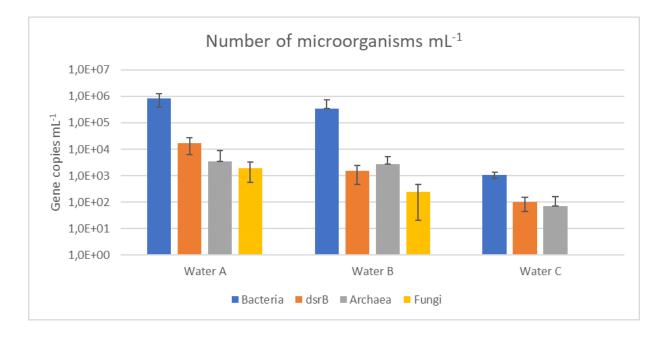
Tafel curves for carbon steel

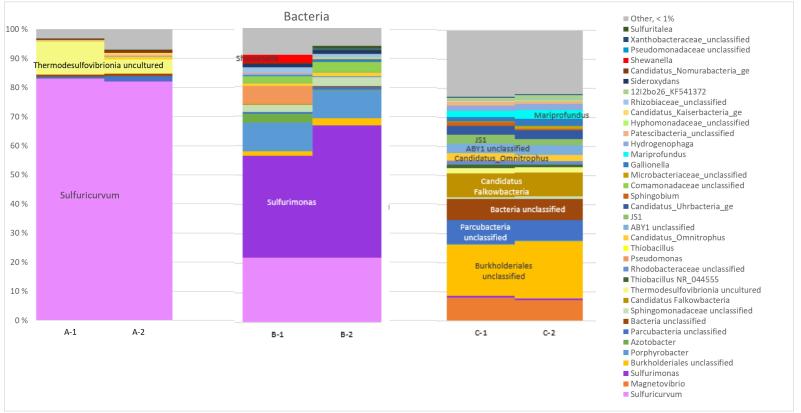
- 250 mV vs. OCP to +250 mV vs. OCP
- 10 mV/min

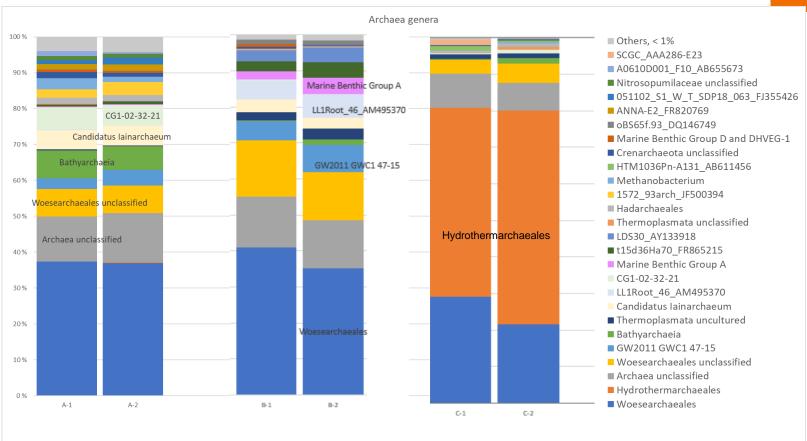
Cyclic polarisation curves for stainless steels

- From OCP to 5 mA/cm², or to + 1000 mV vs.
 Ag-AgCI
- 18 mV/min

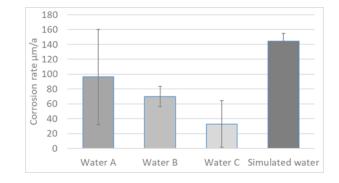
Corrosion rates calculated using Faraday's law

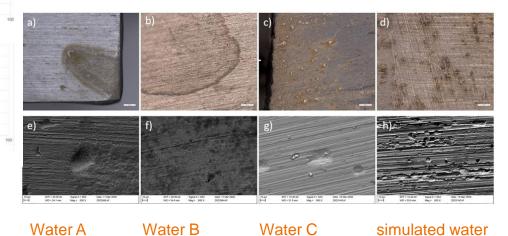

VT.

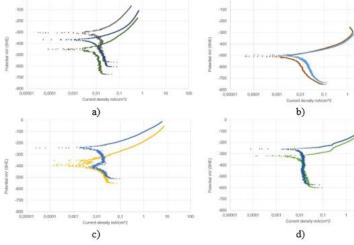

Chemical composition of the waters


Element/ characteristic	Unit	Water A	Water B	Water C	Simulated water
рН		8.73	7.33	7.74	7
Alkalinity pH 4.5	mmol/L	3.15	5.41	1.82	
CO ₂ (total)	mg/L	1 <u>3</u> 8	<u>268</u>	87	
HCO ₃ -	mg/L	(192)	330		
Phosphate	mg/L	< 0.040	0.068	< 0.040	
Sulphate	mg/L	(116)	(482)	566	(500)
Sulphide	mg/L	0.147	< 0.050	< 0.010	
Chloride	mg/L	(723)	(3210)	(4880)	(5500)
Ammonium	mg/L	0.179	2.9	1.82	
Ca (soluble)	mg/L	56.8	444	615	
Mg (soluble)	mg/L	30.2	109	276	
Na (soluble)	mg/L	489	1380	2210	
S	mg/L	44.4	140	204	
Si	mg/L	2.28	7.23	4.56	
TOC	mg/L	6.37	10.3	1.33	
Sulphate/chloride ratio		0.16	0.15	(0.12)	0.09
		Water A	Water B	Water C	
	Pitting	7.25	18.60	82.14	
03/05/2021 VTT – beyond the obvious	index				

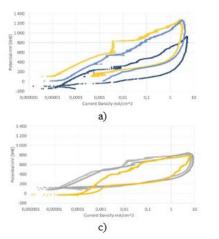
Number of microorganisms in the waters

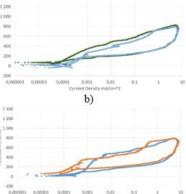






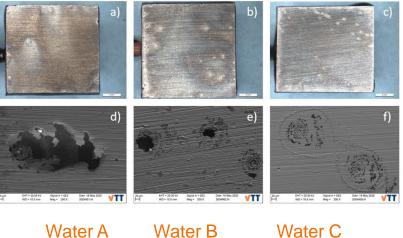
The average corrosion rates


Carbon steel



a) water A, b) water B, c) water C and d) simulated water.

03/05/2021 VTT – beyond the obvious

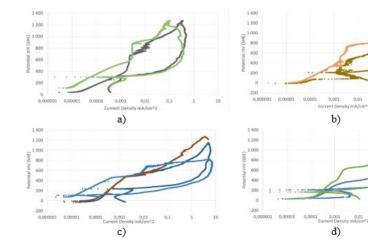

Stainless steel AISI 304

d)

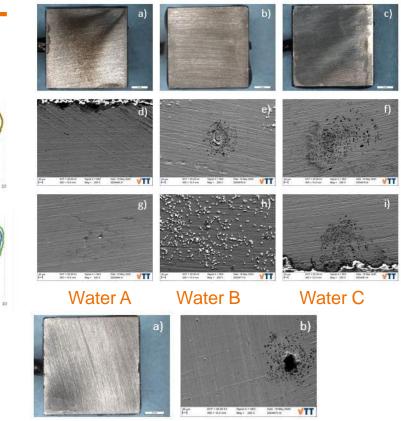
a) water A, b) water B, c) water C and d) simulated water

Water A

Simulated water


Stainless steel AISI 316L

b)


0,001 0,01 Current Density mA/cm^2

d)

0,1

a) water A, b) water B, c) water C and d) simulated water

Simulated water

Conclusions

VTT

Conclusions

- the groundwater differed remarkably in their chemical composition as well as abundance and diversity of microbial community
- corrosivity of the natural water and thus the steels' performance in the water can vary a lot depending on the origin of the water
- besides stainless steel also carbon steel suffered from pitting and other localised corrosion, as predicted by pitting index
- the local groundwater conditions have to be taken into account when predicting the durability and expected life repositioning LLW and ILW steel canisters to guarantee the long-term safety of disposal of nuclear waste

Acknowledgements

VTT Technical Research Centre of Finland Ltd. KYT2022 Finnish Research Programme on Nuclear Waste Management 2019-2022, Project TERKOR

The Finnish power plant operators

Laboratory staff and colleagues