





C. Gundlach, S. Meyer, C. Hopmann, K. Dilger, S. Hartwig Technische Universität Braunschweig | Institute of Joining and Welding c.gundlach@tu-braunschweig.de | Telefon +49 (0) 531 391-65025

## **Motivation & Goal**

- Vibration-based measurement methods require vibration coupling between piezo-electric element and test structure
- State of the art: piezo-electric element bonded to structure by using an adhesive (e.g. 2-component epoxy adhesive)
  - + Good vibration transmission
  - + Tried and tested many times in literature
  - Irreversible connection
  - Preparation of the joining surface and curing time
  - Limits flexibility and scope of the test method
- Development and investigation of alternative connection concepts
- Reversible connections, higher flexibility, reuse of piezo element
- Recommendation of a joining technique based on application

## **Requirements to joining**

| Transferring deformations of piezo element  | • | Deformations in the order of nanometers<br>Transmission for all frequencies from 1 to 45 kHz                      |
|---------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------|
| Influencing vibration characteristics       |   | As little influence as possible due to connection<br>Vibration behavior characterized by properties of structure  |
| Sensitivity                                 |   | High sensitivity of electrical impedance to changes in mechanical impedance of structure                          |
| Attaching piezo element                     |   | Fast, intuitive, short preparation time, high repeatability                                                       |
| Material, geometry and surface of structure |   | Connection suitable for diverse combinations of material, geometry and surface finish of the structure            |
| Ambient temperature                         |   | Increased temperatures possible, up to maximum operating temperature of piezo element (half of Curie Temperature) |
| Lifetime of connection                      |   | High number of load cycles endured<br>Ideally service life corresponds to that of piezo element                   |
| Reversibility                               |   | Reversible removal and reuse of the element<br>Piezo element and structure will not be damaged                    |
| Costs per connection                        |   | Below cost for piezo element                                                                                      |

## **Concepts for Joining**

## **Application-based joining**

New or further development of concepts based on state of the art
 Collecting ideas from literature research and brainstorming

#### Form fit

### Friction coupling

Adapter concept











# No recommendation based on results Promising but improvements needed

## **Experimental Design**

- Measurement setup based on Electromechanical Impedance (EMI)
- High- and Low-Cost piezo-electric elements
- Test structures: Blanks made of steel and polystyrene
- For measurement blanks positioned on foam (free storage)
- Obtaining impedance spectra from every joining technique



Comparison with reference method (2-component epoxy adhesive)
 Evaluation of joining techniques with regard to the fulfillment of the defined requirements

## Conclusion

- Decision diagram derived from experimental results
- Selection of suitable joining technique for different applications
   Force-fit joints only suitable for lower frequency range (< 15 kHz)</li>
- Limited repeatability of reversible methods
- Drift of Impedance spectra with repeated measurement