

Probabilistic analysis of the spatiotemporal variability of the Pugllohuma wetland using Synthetic Aperture Radar images of the Sentinel-1 Mission

Keywords:

SENTINEL 1 – RANDOM FOREST – WETLAND – GOOGLE EARTH ENGINE

04/08/2020

PAUL DAVID CARCHIPULLA MORALES

Pg Nº: 1

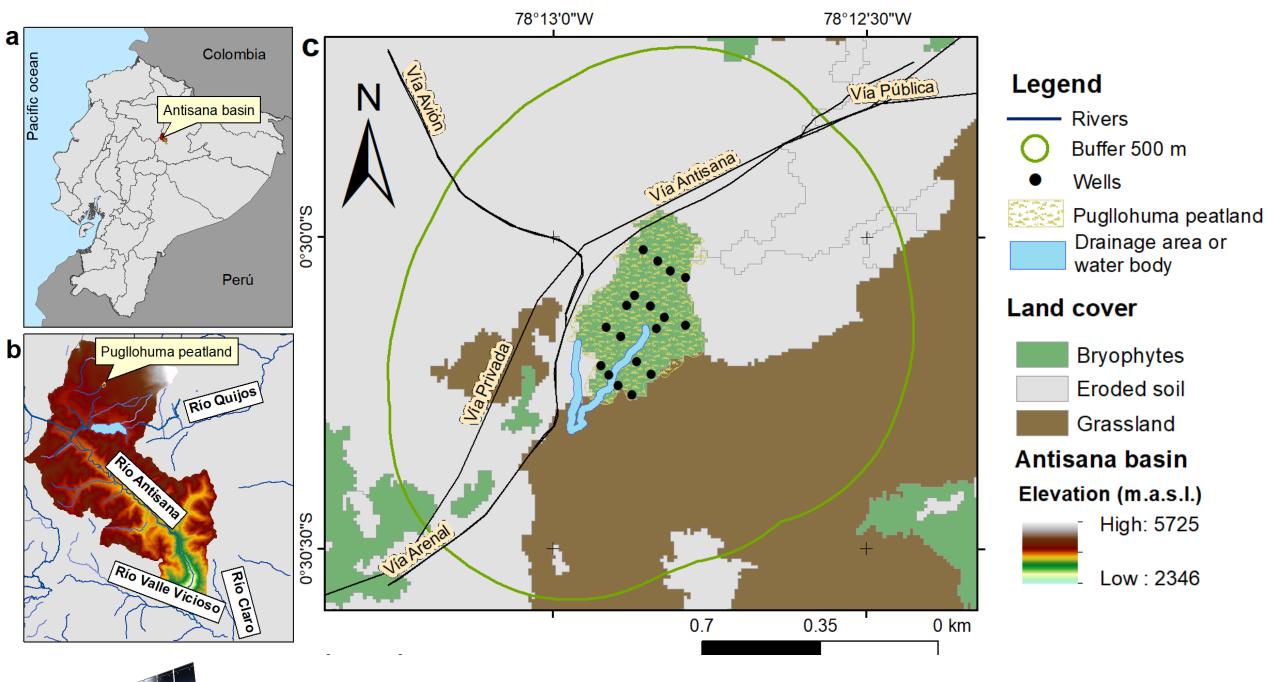
Content

- 1. Background
- 2. Methodology
 - 1. Generation of temporal supervised classification using R Studio
 - 2. Imagery selection and preprocessing using Google Earth Engine
 - 3. Generation of spatial supervised classification using Google Earth Engine
- 3. Results
- 4. Conclusions and recommendations

1. Background: Research relevance

The Pugllohuma peatland is at the north of La Mica system, whose monitoring of vegetation cover, soil analysis, and water dynamics are carried out by FONAG.

The current research may help to develop strategies and concrete actions for the protection of important water conservation areas for the Metropolitan District of Quito.

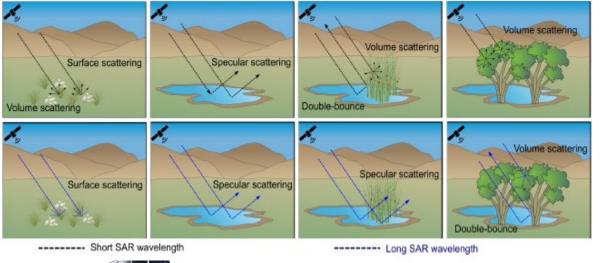


Pg:4

1. Background: SAR relevance

Synthetic aperture radar

Radars are useful in detecting wetland areas with a high level of cloud cover because they are capable of penetrating clouds. Additionally, radar backscatter is sensitive to dielectric properties, including flood level, soil moisture, or salinity, which are common characteristics of wetland ecosystems.



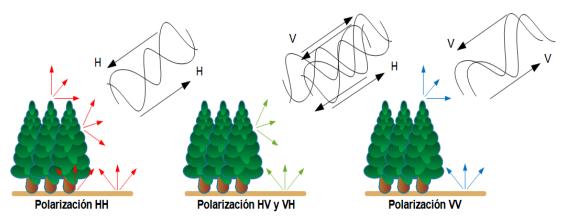
Other investigations

- Bourgeau, et al. (2015). Development of a bi-national Great Lakes coastal wetland and land use map using three-season PALSAR and Landsat imagery.
- Gabrielsen, et al. (2016). Using a multiscale, probabilistic approach to identify spatial-temporal wetland gradients.
- Behnamian, et al. (2017). Semi-automated surfacewater detection with synthetic aperture radar data: A wetland case study.
- Jensen, et al. (2018). Assessing L-Band GNSS-reflectometry and imaging radar for detecting sub-canopy inundation dynamics in a tropical wetlands complex.
- Armani, et al. (2019). Canadian wetland inventory using Google Earth Engine: The first map and preliminary results.
- El Hajj, et al. (2019). Penetration analysis of SAR signals in the C and L bands for wheat, maize, and grasslands.

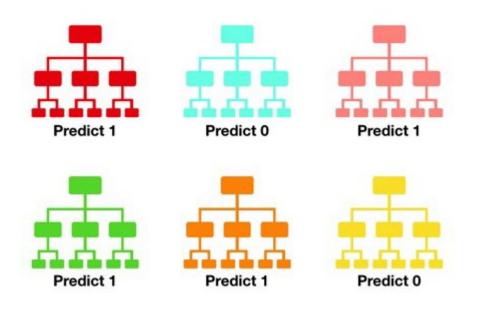
1. Background: Machine learning

Temporal assessments include many information from each image, some of there are:

- Incidence angle
- Terrain
- Day of the year
- Flying trajectory
- Backscattering



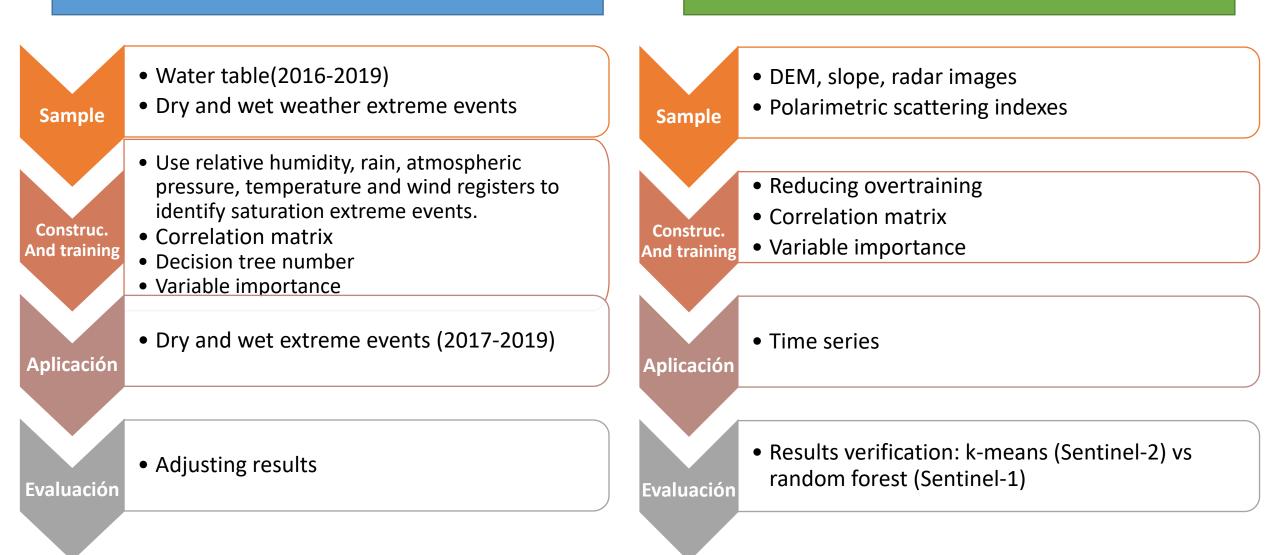
Supervised classification is based on the idea that a user can select sample pixels in an image that are representative of specific classes and then direct the image processing software to use these training sites as references for the classification of all other pixels in the image.



2. Methodology

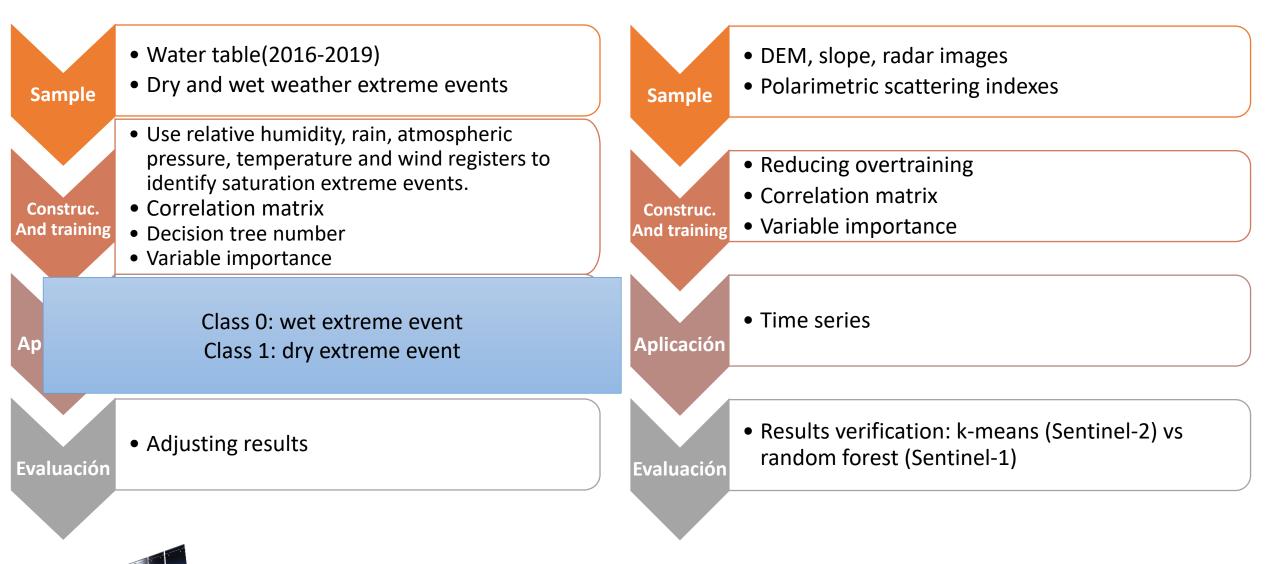
TEMPORAL CLASSIFICATION

SPATIAL CLASSSIFCATION



TEMPORAL CLASSIFICATION

SPATIAL CLASSSIFCATION

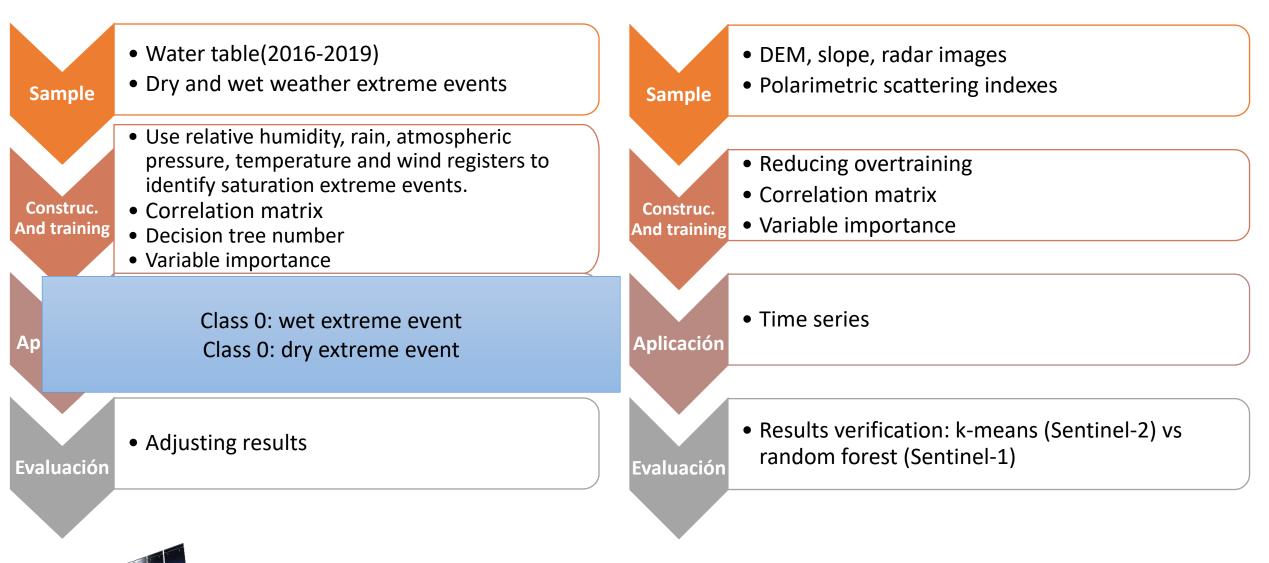


Temporal sample

Relative humidity (%)		Atmospheric pressure (mbar)	Rain (mm)	Temperature (ºC)	Wind direction (º)	Wind speed (m s-1)	Day of the year	Class
94.41		623.67	2.32	3.33	259.99	3.58	100	1
94.32		623.77	1.56	3.71	272.18	3.70	101	0
		PA: Atm P	elative humidity ospheric pressur Precip: Rain pheric temperatu		WD: Wind direction WS: Wind speed DOY: Day of the year			

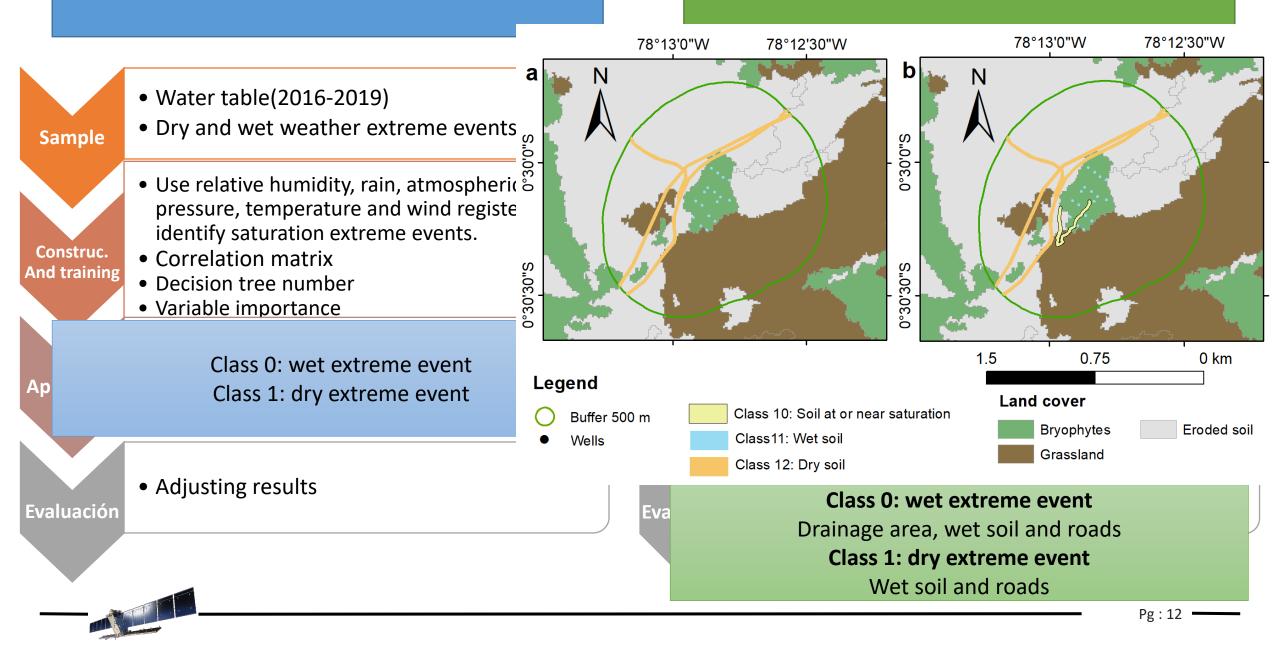
TEMPORAL CLASSIFICATION

SPATIAL CLASSSIFCATION



TEMPORAL CLASSIFICATION

SPATIAL CLASSSIFCATION



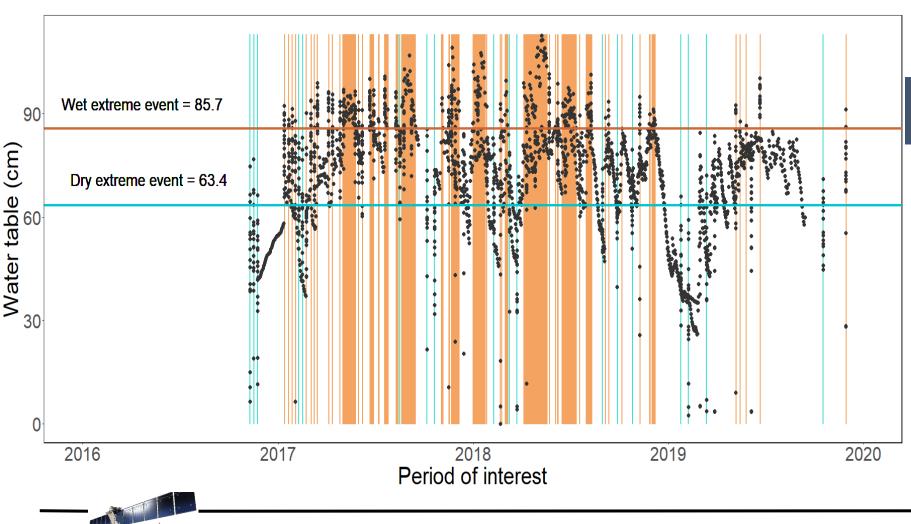
Spatial sample

Terrain elevation (m.a.s.l.)	Day of the year	NDPI	NVHI	NVVI	VH (db)	VHrVV	VV (db)	Capture angle (º)	Slope (º)	Class	
4132	37	0.19	0.59	0.41	23.00	1.46	15.80	43.06	3.10	11.00	
4143	321	0.26	0.63	0.37	25.90	1.71	15.20	43.01	14.00	12.00	
4119	138	0.41	0.70	0.30	24.30	2.38	10.20	33.88	3.10	10.00	
	DF	EM: Terrain e	elevation			VHrVV: Polarized ratio(VH - VV)					
	C	OOY: Day of t	he year			VH: Cross-polarization					
1	NDPI: Norma	lized polariz	zed differend	e index		VV: Co-polarization					
	NVH	II: Normalize	ed VH index			Angle: Backscattering incidence angle					
	NVV	'I: Normalize	ed VV index			Slp: Terrain slope					

3. Results

all how he

Temporal classification: Sample



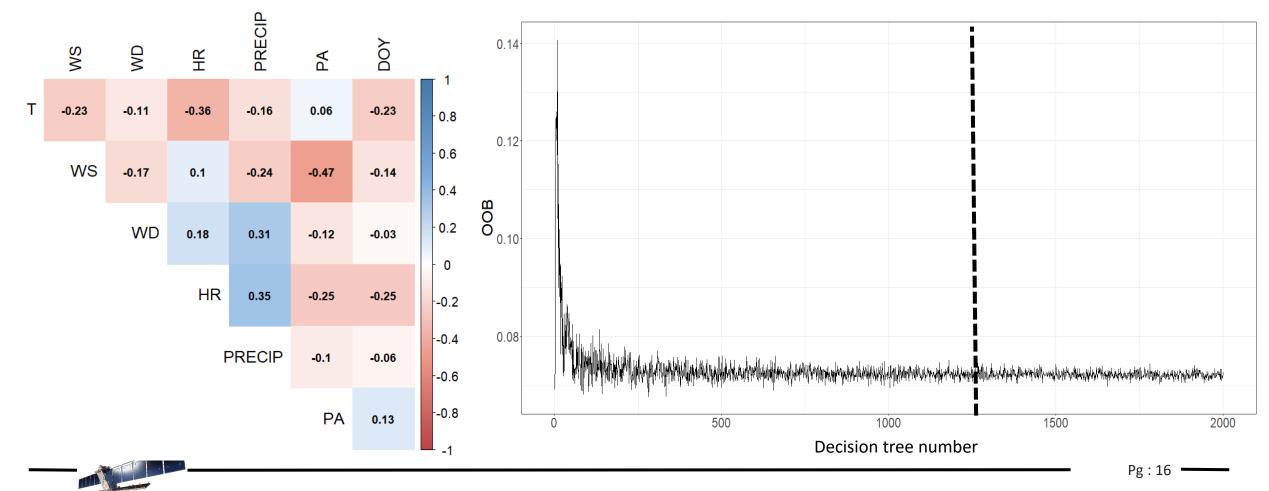
Automatic and manual measurements

- Data distribution to define thresholds
- 243 wet extreme events from January 2017 to November 2019
- 285 dry extreme events from November 2016 to November 2019

Temporal classification: Construction and training

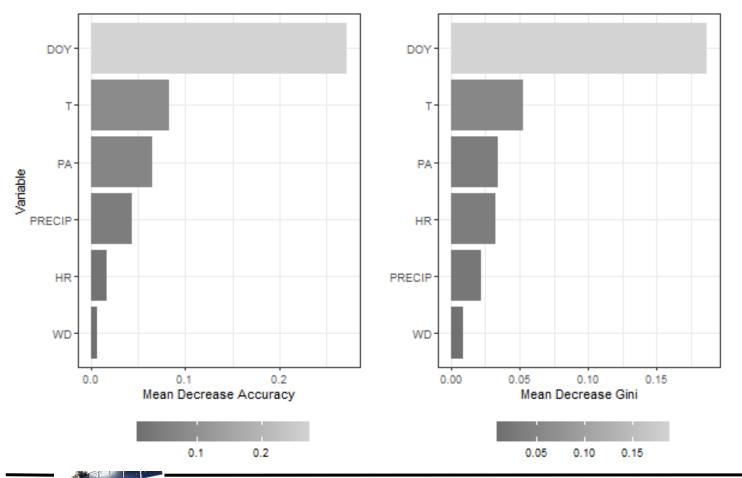
Variable correlation

OOB error vs decision tree number



Temporal classification: Construction and training

Variable importance

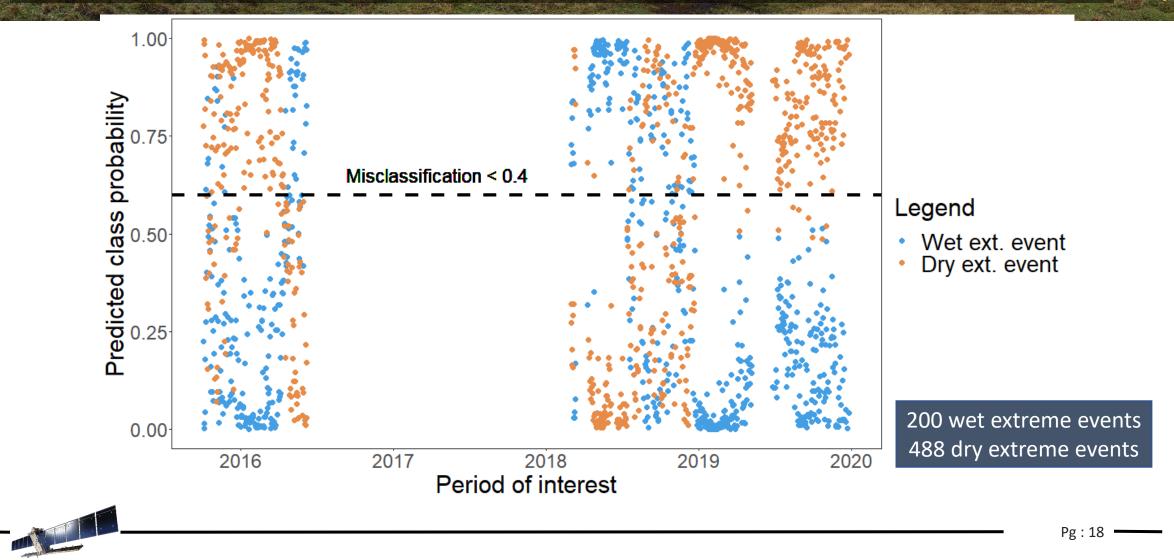


Outputs Data distribution to define thresholds

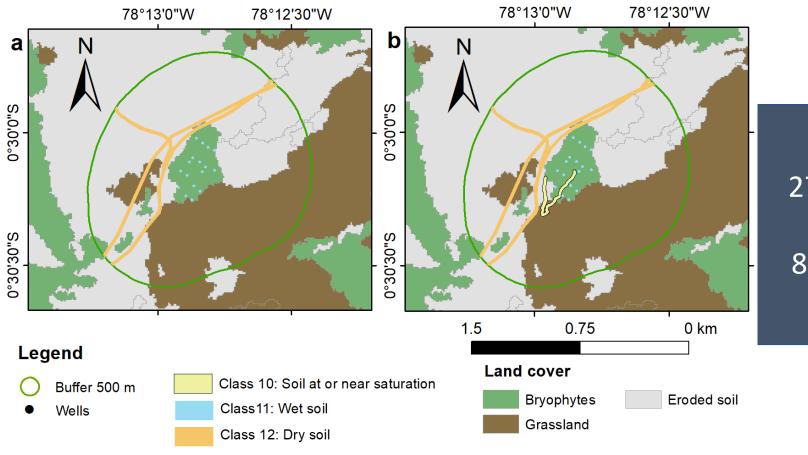
237 wet extreme events from October 2015 to October 2019

 524 dry extreme events from October 2015 to December 2019

Temporal classification: Adjusting results



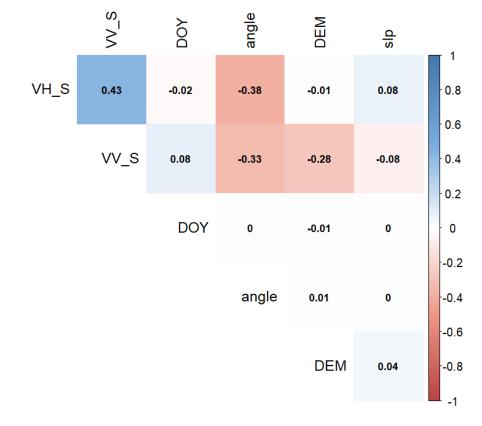
Spatial classification: Sample



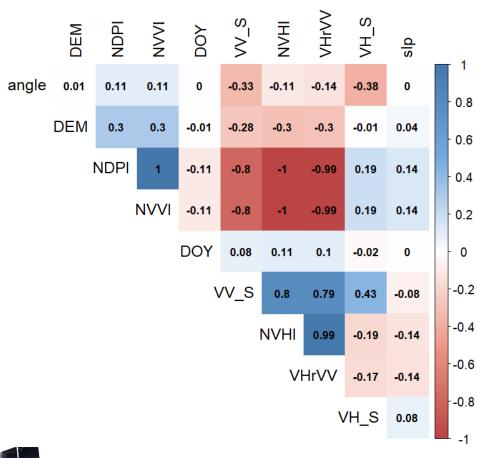
27 images for wet extreme events

86 images for dry extreme events

Spatial classification: Construction and training



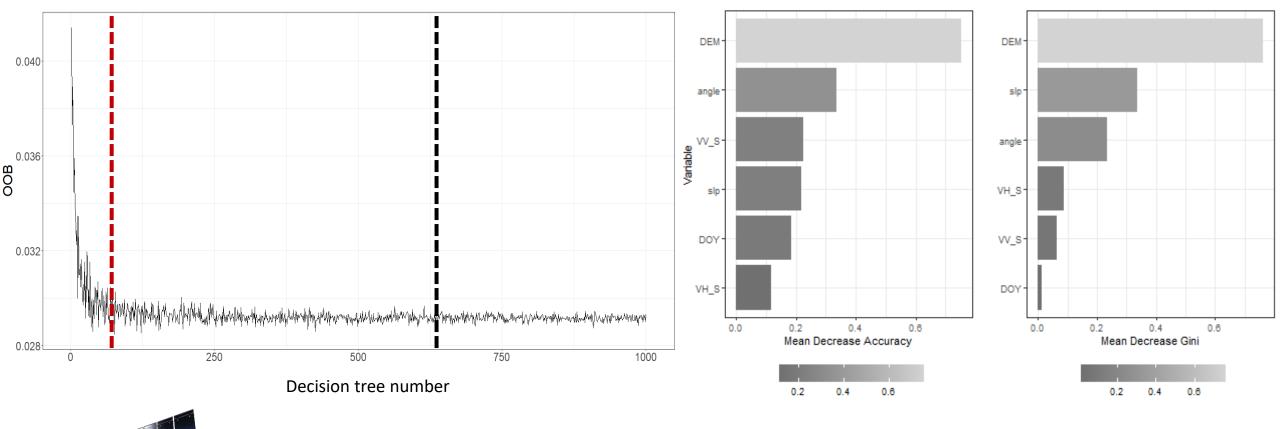
Variable correlation



Spatial classification: Construction and training

OOB error vs decision tree number

Variable importance



Spatial classification: Result verification

Supervised classification

-

no		Soil at or near saturation	Wet soil	Dry soil	Total	Coincidence
classifi	Soil at or near saturation	216.9	0.0	434.3	651.2	0.3
	Wet soil	0.0	66.8	201	267.8	1.0
	Dry soil	0.0	0.0	1213.8	1213.8	0.3
	Total	216.9	66.8	1849.1	2132.8	
	Coincidence	1.0	1.0	0.7		0.7

GUI: Pugllohuma peatland classification

Conclutions and recommendations

Temporal classification

- Day of the year,
- Atmospheric temperature,
- And rain.

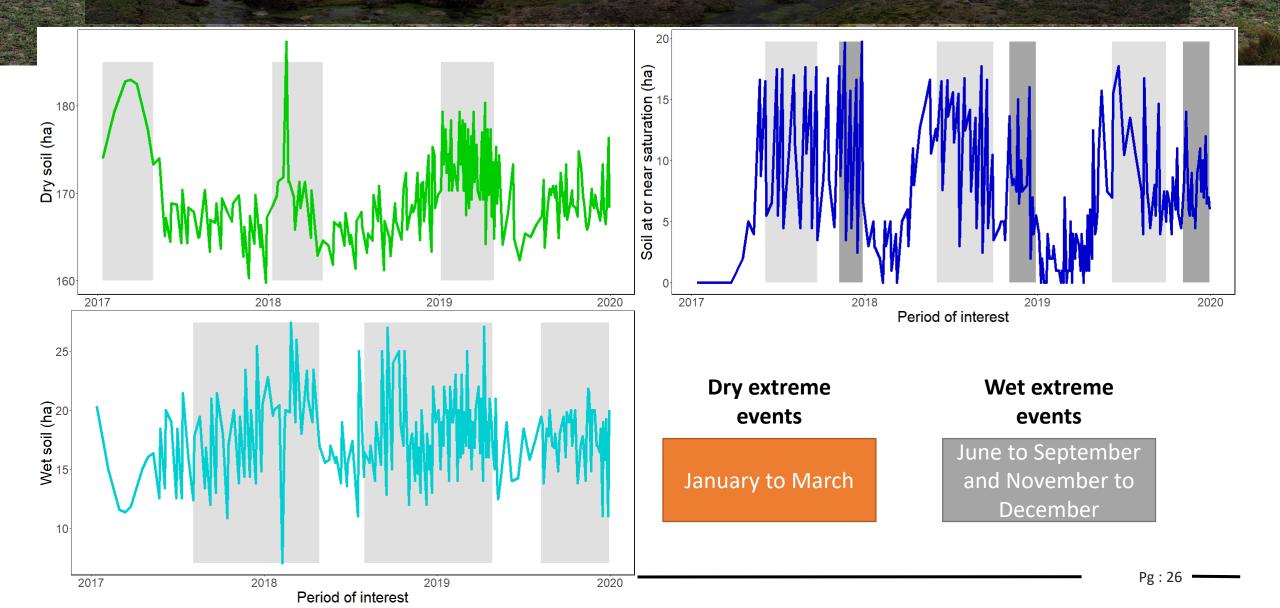
Spatial classification

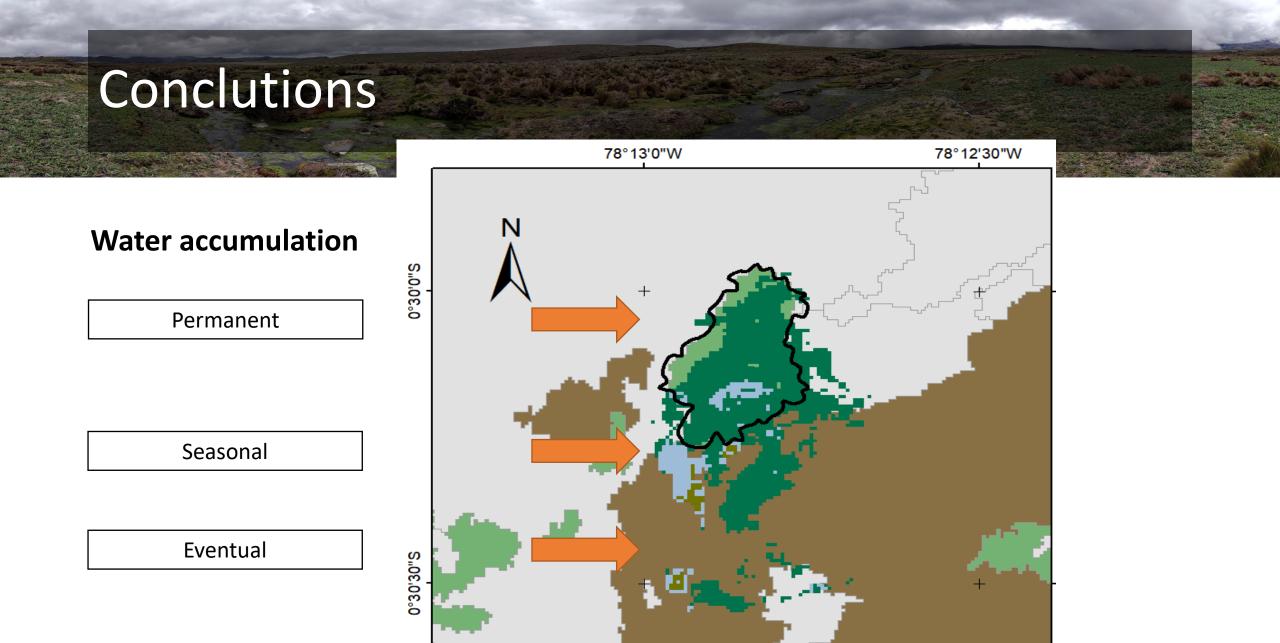
• Terrain elevation

Wind direction, relative humidity, and atmospheric pressure

Incidence angle and day of the year of the image, terrain slope, and backscattering

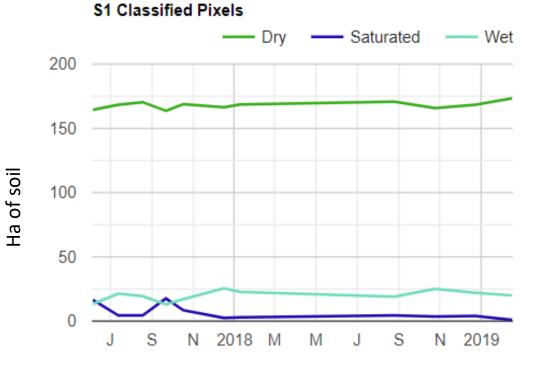
Conclutions

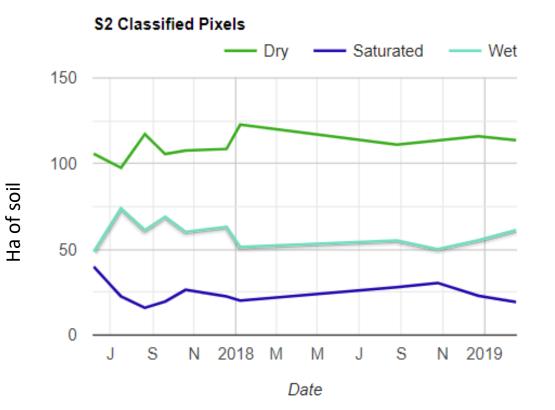




Conclutions

-





Recommendations

Include new climate databases

Work with more satellite missions that are "unaffected" by weather conditions

Include controls of spatio-temporal changes in field visits

Combine information generated by active and passive satellites

Work with different wavelengths and polarizations

Questions: paul.carchipulla@epn.edu.ec

