

USING INTERDIGITATED ORGANIC ELECTROCHEMICAL TRANSISTORS AS ELECTROPHYSIOLOGICAL AND BIOCHEMICAL SENSORS

Dr. Dirk Mayer

o li li li c

How do we understand neuronal signaling in the brain? How neurons control behavior? How signaling malfunctions during disease?

Y. Liang, et al. Advanced Healthcare Materials 2021, 2100061.

000

Organic electrochemical transistors

Electorphysiological sensors

D. Khodagholy, Nature Commun, 2013

Biochemical sensors

Fu et al Adv. Mater. 2017, 1703787

Rivnay, J. et al. (2018) Nature Reviews I Materials

Liang et al. Adv. Healthcare Materials (2021) 2100061

Working Principle OECTS

Y. Liang, et al. Advanced Healthcare Materials 2021: 2100061.

0.4

0.2-

0.0

-0.2

-0.4

0.1

 $V_g(g_{m,max})/V$

Planar OECTs

Transconductance

W/L

Rivnay et al Adv.Mater. 2013, 25, 7010-7014

Vertical OECTs

 $g_{\rm m} = (W \cdot d/L) \cdot \mu \cdot C^* \cdot (V_{\rm T} - V_{\rm G})$

Donahue et al Adv. Mater. 2018, 30, 1705031

Low transistor density

140 nm

25 nm

 $g_{m,max}$

10

1 mS 100 µS

10 µS

Electrode Design

iOECTs performance

Liang et al Adv. Fun. Mater. 2019 1902085

Digit number/ width/ channel length

 $N_{\rm f} \uparrow W_{\rm f} \uparrow L_{\rm ch} \downarrow g_{\rm m}$

Source-drain series vs. channel resistance

Liang et al Adv. Fun. Mater. 2019 1902085

Action potentials recordings of HL-1 cells

Smallest transistor area: 30 μ m*22 μ m N_{f} =4, W_{f} =2 μ m, L_{ch} =2 μ m

Liang et al Adv. Healthcare. Mater. **2018** 1800304

Liang et al Adv. Fun. Mater. 2019 1902085

OECT as Biosensor

Electrochemical biosensors

- Thermostable
- Easy modification
- Inexpensive

Drawbacks: The obtained electrochemical signals are usually limited by the surface probe density and high background signal

Amperometric vs. Potentiometric Transducer

Potentiometric Transducer

Macroelectrode

Annealed with a hydrogen flame, then coolded down to room temperature

50 mM H_2SO_4 to determin the surface area Incubation in DNA oligomer pretreated with TCEP for 16h Blocked by MCH for 1h

Potentiometric Transducer

Liang et al Bios. Bioelect. 2019 144, 111668

Flexible OECT

Liang et al. *Materials*13.11 (2020): 2577.

Fransconductance (mS)

3

Dopamine detection via OECT

Liang et al. Materials 13.11 (2020): 2577.

Sensor reusability

Liang et al Bios. Bioelect. 2019 144, 111668

Future directions

iOECT performance limited by source-drain series resistance 3D source and drain electrodes, improve charge injection Improve channel stability

High density iOECTs potentially facilitate combination of electrochemistry with electrophysiology on chip but requires integration of gate electrode

Σ

Grand future challenge is to integrate different devices to better understand the coordinated changes of action potentials and different molecules on different time and length scales in the brain

