Photonic biosensor for label-free detection based on photonic nanostructures on Si-waveguide ring resonator

Department of Communications Engineering, Graduate School of Engineering, Tohoku University Hoang Anh Truong, Yugang Shang, Shunsuke Abe, Nobuyuki Matsuda, Hirohito Yamada Email: truong.hoang.anh.c6@tohoku.ac.jp

INTRODUCTION	OBJECTIVE
 Silicon based micro-ring resonator biosensor is a high potential label-free biosensing device with advantages of a possibility of all-in-one-chip detection and low-cost fabrication. The sensitivity of sensing biomolecule is proportional to the change of effective refractive index as the light-matter interaction occurs on the surface of the 	Analyzing the effect of enhanced sensing surface based on photonic nanostructures of the micro-ring resonator on the sensitivity and quality factor.
waveguide.	DDODOCED CTUICTUDE OF DINC DECONATOD
• Before binding • After binding	PROPOSED STRUCTORE OF RING RESUNATOR

 n_{eff} : effective refractive index λ_0 : resonance wavelength Δn_{eff} : the change of the effective index, by the interaction of field and analyte

• The sensitivity depends on the light-matter interaction on the surface or the sidewall of the waveguide.

Periodical combination of Sidewall-grating waveguide ◆Side-blocks

Number of blocks: 72 *R*: 7 μ m, Δr : 0.15 μ m $w_{\rm b}$: 0.15 µm, $w_{\rm w}$: 0.2 µm, $w_{\rm 0}$: 0.5 µm $\Lambda: 5^{\circ}, \Delta\Lambda: 2^{\circ}$

The proposed structure enhances the sensing surface of the ring resonator

CHARACTERISTICES OF RING RESONATOR

- Spectral response calculation method: 3D Finite Difference Time-Domain by Rsoft Photonic CAD Suit
- Electric field calculation method: Finite Element Method by Rsoft Photonic CAD Suit

Ring resonator structures

Electric field intensity distribution

Quality factor

There is no significant reduction in quality factor of the proposed structure.

-1.0

RING RESONATOR WITH BUS WAVEGUIDE

CONCLUSIONS

• Calculation method: 2D Finite Difference Time-Domain by Rsoft Photonic

Electrical amplitude distribution A SEEDISS (mm) $X(\mu m)$ Almost the entire field is

propagating in the output

waveguide.

We proposed a Bragg grating ring structure for photonic ring resonator biosensor.

- The simulated results of the ring resonator with photonic nanostructures show four-fold improvement of the sensitivity compared with the conventional structure of the waveguide while the quality factor does not change.
- \bullet The improved sensitivity is promising for detection of nanoparticles in the application of environmental field and clinical diagnostics.

FUTURE WORK

• Improving Q factor for the micro ring biosensor when combining with the bus WG. For example, changing the gap and width of structures.

• Device fabrication and experimental demonstration.