



# **GRAVITY VARIATION EFFECTS ON THE GROWTH OF MAIZE SHOOTS**

#### BY:

#### Funmilola Oluwafemi

Engineering and Space Systems Department, National Space Research and Development Agency (NASRDA), Abuja, Nigeria.

### **PRESENTATION OUTLINE**

- 1. Introduction
- 2. Microgravity Research
- 3. Selected Crop for Microgravity Simulations
- 4. Importance of Plants Shoot
- 5. Aim
- 6. Experiment
- 7. The Three Samples
- 8. Results
- 9. Discussion
- **10.** Future Work
- 11. Conclusion
- 12. References

### INTRODUCTION

- **Gravity** is always present on earth.
- **Microgravity** is a characteristic of the outer space environment.
- On-board spaceflight microgravity-experiments are rare and expensive.
- Similar experiments are now being conducted on the earth surface using microgravity equipment that provides simulated microgravity conditions; such as the Clinostats.
- A **Clinostat device** uses rotation to negate gravitational-pull effects on plant growth and development.
- A two-dimensional (2-D) Clinostat has a single rotational axis, which runs perpendicular to the direction of the gravity vector. It operates with respect to speed and direction of the rotation.



**International Space Station (ISS)** 



2-D Clinostat

### **MICROGRAVITY RESEARCH**

- Microgravity research gives insight on the new orientation of plants after been impacted by microgravity.
- These effects of microgravity on plants sometime gives definite changes which could be beneficial.
- These researches are therefore called gravity variation researches as the normal-earthgravity (1G) and microgravity (µg) platforms are possible variations for experimental purposes.

#### **SELECTED CROP FOR MICROGRAVITY SIMULATIONS**

- The selected crop is maize.
- It is selected because of its nutritional and economical values.
- It is number one cereal in Africa and number two cereal in the world.



Corn (Zea mays)

### **IMPORTANCE OF PLANTS SHOOT**

- In the experiment, the shoots of the plants were the focus.
- The shoots of the seedlings were studied because plant shoot physiology is important for graviresponses. If the shoot of a plant is unable to perform or function, then so will the plant not be able to function.



#### AIM

The aim of this study was to understand the impact of gravity on maize growth to determine what its orientation will be in space, where there is microgravity; as well as to identify the underlying mechanisms and to conduct observational experiments (by measurement of the curvature angles and growth-rates of shoots using ImageJ software) with respect to gravitropic reactions with the shoots grown of maize under simulated microgravity environment and comparing them with those of control experiments.



### **EXPERIMENT**

- The steps necessary for preparing an experiment using the Clinostat with plants include:
- preparation of the substrate for seeds in petri dishes.
- **planting of seeds** into the substrate.
- cultivation inside a wet chamber.
- Ascertain that gravity is active in the laboratory (90°-turned sample).
- Placement of the seeds on the Clinostat (source of simulated microgravity).
- The **possible experimental variables** are humidity, temperature and light while on the Clinostat, **rotation-speed**, **rotational-axis angle and rotation-direction** are the specific experimental variables.
- possible methods for getting results with a further analysis of observed graviresponses to compare the effect of **simulated microgravity on grown roots** of plants to those under **gravity response**.
- Observations were made for 4 hours during the experiments on the samples and a wide range of observational and measurement tools (such as imageJ) were used.



## **THE THREE SAMPLES**



The three samples: (a) 1G-control sample; (b) 90°-turned sample; (c) Clinorotated sample.

## RESULT

#### **Growth-rate**



The average growth-rate of the shoots for the 1G-control sample was 1.25cm/hr while that of the clinorotated sample was 1.26cm/hr.



Shoot length of the 1G-control and the clinorotated samples of maize seedlings.

## **RESULT CONT'D**

#### Shoot curvature



The average angular rate of the shoot bending for the 90°-turned was 55.49% hr while that of the clinorotated was 50.77% hr.



Shoot curvature of the 90°-turned and the clinorotated samples of maize seedlings.

# DISCUSSION

- The shoot length enhancement have physiological basis.
- It can be deduced that there could be changes in the vascular structure of the shoots as a result of the orientation of microfibrils and their assembly in developing vessels perturbed by simulated microgravity. The image of the 90°-turned sample showed that the shoots started bending in the direction of gravity after the petri-dish was turned by 90°. This is an evidence of gravitropism of the shoots; this indicates a positive response to simulated microgravity.
- Therefore, maize has a promising result with the use of Clinostat simulated microgravity model.

# **FUTURE WORK**

This study is only on the shoot morphology (curvature and length); further research work is proposed on the plant photosynthesis, respiration, transpiration, and gene expression. All these involve the flow of information and communications within the underlying cells.



#### **Developmental vegetative stages of corn**

## CONCLUSION

- Plants account for the majority of human food. Therefore, improving the growth-rate status of plants will help increase the crop's yield which is an important factor to feeding the world's growing population.
- In this study, simulated microgravity using 2-D Clinostat was able to cause an increase in the shoot growth-rate of maize as a response from gravity to simulated microgravity.
- Therefore, simulated microgravity of Clinostat is proposed to have beneficial effects on the in-built structure of seedlings before they are transplanted unto the field to produce **better product yields and higher nutritional qualities**. Thus, "simulated space stressing" of plant at the early stage of seedling could be advantageous.



#### REFERENCES

- 1. Afolayan, E.M.; Oluwafemi, F.A.; Jeff-Agboola, E.O.; Oluwasegun, T.; Ayankale, J.O. Socioeconomic benefits of microgravity research. Arid Zone Journal of Engineering, Technology and Environment (AZOJETE), Centre for Satellite Technology Development Special Issue: Space Science and Technology for Sustainable Development 2019, 15, SP.i2: 57-74, Print ISSN: 1596-2490, Electron vic ISSN: 2545-5818.
- 2. Oluwafemi, F.A.; De La Torre, A.; Afolayan, E.M.; Olalekan-Ajayi, B.M.; Dhital, B.; Mora-Almanza, J.G.; Potrivitu, G.; Creech, J.; Rivolta, A. Space food and nutrition in a long-term manned mission. Adv. Astronaut. Sci. Technol. 2018, 1, 1. Doi: 10.1007/s42423-018-0016-2.
- 3. Howard, G.L. The Influence of microgravity on plants. NASA Surface Systems Office, Space Life Sciences Laboratory, Mail Code NE-S-1, Kennedy Space Center, FL 32899. NASA ISS Research Academy and Pre-Application Meeting, South Shore Harbour Resort & Conference Center, League City, Texas, 2010.
- 4. Oluwafemi, F.A.; Ibraheem, O.; Fatoki, T.H. Clinostat microgravity impact on shoot morphology of selected nutritional and economic crops. Plant Cell Biotechnol Mol Biol. 2020, 21(43&44), 92-104. ISSN: 0972-2025.
- 5. Oluwafemi, F.A; Olubiyi, R.A. Investigation of corn seeds growth under simulated microgravity. Arid Zone Journal of Engineering, Technology and Environment (AZOJETE), Centre for Satellite Technology Development Special Issue: Space Science and Technology for Sustainable Development 2019, 15, SP.i2:110-115, Print ISSN: 1596-2490, Electronic ISSN: 2545-5818.
- 6. Awika, M.J. Major cereal grains production and use around the world. ACS symposium series. 2011, 1089, pp. 1-13. DOI: 10.1021/bk-2011-1089.ch001.
- 7. United Nations. Teacher's guide to plant experiments in microgravity. Human Space Technology Initiative. United Nations Programme on Space Applications, Publishing and Library Section, United Nations Office, ST/SPACE/63, New York, 2013.



15



