

Abstract

Evaluation of Redox Peptide Modified Surfaces for Biosensing Applications ⁺

Sarah Brandão ¹, Adriano dos Santos ², Júlia Pinto Piccoli ¹, Paulo Roberto Bueno ² and Eduardo Maffud Cilli ¹

- ¹ Department of Biochemistry and Organic Chemistry, Institute of Chemistry, UNESP - Univ Estadual Paulista, São Paulo, Brazil; sarahtolentinorb@gmail.com (S.B.); juliappiccoli@gmail.com (J.P.P.); eduardo.cilli@unesp.br (E.M.C.)
- ² Department of Physical Chemistry, Nanobionics Research Group, Institute of Chemistry, UNESP - Univ Estadual Paulista, São Paulo, Brazil;

adriano.santos1@unesp.br (A.d.S.); paulo-roberto.bueno@unesp.br (P.R.B.) † Presented at the First Canadian Peptide and Protein Community Virtual Symposium, 27–28 May 2021; Available online: https://cppc2021.sciforum.net/.

Published: 27 May 2021

Abstract: Peptides are promising tools for designing sensitive and stable biosensors. For example, the redox self-assembled monolayer (SAM) based on the sequence Fc-Glu-(Ala)2-Cys-NH2 was successful evaluated as transducing interface in electrochemical biosensors. The design of such peptides includes: 1) cysteine to bind covalently the peptide to the gold electrode; 2) glutamic acid in N-terminal position to bind the ferrocene (Fc) in the amine group, and the antibody in the δ -carboxyl group, and 3) alanine to form a hydrophobic layer. Herein, we present the solid-phase synthesis of three different peptides with structure Fc-Glu-(X)2-Cys-NH2 (X=Ser, Gly or Phe) and the electrochemical behavior of the obtained SAMs. The Gly was chosen because of its smallest side chain, while Ser and Phe present hydroxyl groups (for H-bonds) and aromatic (for π - π interaction), respectively. The synthesis successful of the HPLC purified peptides were confirmed by mass spectroscopy. From cyclic voltammetry and impedance-derived electrochemical capacitance spectroscopy results, all peptides present reversible redox processes, and electron transfer rates (ket) ranging from 17 to 31 s⁻¹. Since the peptide with Gly residues presented both the highest surface coverage ($\Gamma = 2.6 \times 10^{-10} \text{ mol/cm}^2$) and electrochemical capacitance (C_{μ} = 270 μ F/cm²) values, it can be potentially applied for biosensors designing.