

Membrane active peptides and their interactions with REVs protein corona

Priyanka Singh, Imola Cs. Szigyártó, Maria Ricci, Mayra Queme-Peña, Anikó Gaál, Diána Kitka, Zoltán Varga, Tamás Beke-Somfai

Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary, priyanka.singh@ttk.mta.hu

1. Introduction

Extracellular vesicles are lipid bilayer enclosed nanoparticles released by most cells and found in body fluids. They have the advantage of displaying native membrane protein on their surface and are involved in several biological processes like cellular uptake, immune response, and cancer progression. We used red blood cell derived vesicles (REVs) as improved model of membrane to investigate action mechanism peptides membrane active (MAPs) using several biophysical techniques such as polarized light spectroscopy¹, microfluidic resistive pulse sensing and freeze-fracture transmission electron microscopy. Several MAPs were selected to study their interaction with REV membrane such as Melittin (GIGAVLKVLTTGLPALISWIKRKRQQ), CM15 (KWKLFKKIGAVLKVL), KLA (KLAKLAKKLAKLAK) and PNC28 (ETFSDLWKLL) which exert not only antimicrobial but also anticancer effect.

Top: Correlation function of particle size and hydrodynamic diameter table. Bottom: Size distributions of the REV and REV + 50 μ M Melittin samples

LD signal changes of REV sample admixed with increasing concentrations of MAPs

- A positive peak at ~420 nm corresponds to Soret band, arises from oriented membrane associated hemoglobin molecules of REV.
- This disappearance of the Soret band was concentration and peptide dependent indicating detachment of membrane-bound hemoglobin¹.

5. "Wiping-off" membrane surface proteins

6. Conclusion

- REV used as improved model membrane provides excellent platform to understand better interaction of membrane active compounds with protein corona of REV and reveals new functions² for MAPs.
- This further highlights therapeutic potential of EV focused in nanoparticle and surface engineering.

7. Acknowledgements

This work was funded by the Momentum programme (LP2016-2), by the National Competitiveness and Excellence Program (NVKP_16-1-2016-0007) and BIONANO_GINOP-2.3.2-15-2016-00017. The János Bolyai Research Scholarship (Z.V.) is greatly acknowledged.

8. References

1. Szigyártó, I.C., et al., 2018. ChemBioChem 19, 545–551. https://doi.org/10.1002/cbic.201700378

Singh, P., et al., 2020. Frontiers in Chemistry 8. https://doi.org/10.3389/fchem.2020.00703