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Abstract: (1) Background: Various machine learning (ML) methods are applied for prediction of 

individual clinical efficiency of cancer drugs and therapeutic regimens. As features for ML, different 

multi-omics data may be used, such as genomic, transcriptomic, proteomic, and interactomic 

(activation levels of intracellular molecular pathways) profiles. (2) Methods: We proposed a next-

generation ML approach termed FloWPS (FLOating-Window Projective Separator) that uses pre-

processing/trimming/filtration of multi-omics features when building the ML models, in order to 

preclude extrapolation in the feature space. Additionally, FloWPS allows to neglect the influence of 

preceding cases from the training dataset, which are too distant in the feature space from the case that 

must be classified. Such extrapolation, as well as too distant instances, can cause model overtraining 

and results in decreased ML accuracy. (3) Results: Using Gene Expression Omnibus (GEO), The 

Cancer Genome Archive (TCGA), Tumor Alterations Relevant for GEnomics-driven Therapy 

(TARGET) project databases, as well as our own data, we selected 27 gene expression datasets for 

cancer patients, annotated with clinical response status. Each dataset had the same cancer type and 

treatment regimen. The biggest dataset included 235, and the smallest - only 41 patient cases. To form 

the robust set of marker features (gene expression levels), we applied the leave-one-out (LOO) cross-

validation test that selected genes with the highest AUC values for good-vs-poor responder 

discrimination. Using the blind/agnostic LOO approach for data trimming, we demonstrated essential 

improvement of ML quality metrics (AUC, sensitivity and specificity) for FloWPS-based clinical 

response classifiers for all global ML methods applied, such as support vector machines (SVM), 

random forest (RF), binomial naïve Bayes (BNB), adaptive boosting (ADA), as well as multi-level 

perceptron (MLP). Namely, the AUC for the treatment response classifiers increased from 0.61–0.88 

range to 0.70–0.97. (4) Conclusion: Considering our ML trial with 27 clinically annotated cancer gene 

expression datasets, the BNB method showed best performance for data trimming and was the most 

effective for classifying the clinical response using multi-omics features, with minimal, median and 

maximal AUC values equal to 0.77, 0.86 and 0.97, respectively.  

Keywords: bioinformatics; personalized medicine; oncology; chemotherapy; machine learning; omics 

profiling. 
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1. Introduction 

Machine learning (ML) methods can offer even a wide spectrum of opportunities by non-

hypothesis-driven direct linkage of specific molecular features with clinical outcomes, such as 

responsiveness on certain types of treatment [1,2]. 

The high throughput transcriptomic data, including microarray- and next-generation sequencing 

gene expression profiles can be utilized for building such classifiers/predictors of clinical response to a 

certain type of treatment. However, the direct use of ML to personalize prediction of clinical outcomes 

is problematic, due to the lack of sufficient amounts of preceding clinically annotated cases 

supplemented with the high-throughput molecular data (~thousands or tens thousands of cases per 

treatment scheme) [3]. As a result, classical ML methods are often not successful in predicting clinical 

outcomes for several model datasets [4–8]. 

To improve the performance of ML in biomedicine, we recently developed an approach called 

flexible data trimming (FDT), which removes or excludes extreme values, or outliers, from a dataset 

[2,9–11]. Excluding non-informative features helps ML classifiers to avoid extrapolation, which is a 

well-known problem of ML [12–15]. Thus, for every point of a validation dataset, the training dataset is 

adjusted to form a floating window. We, therefore, called the respective ML approach, floating window 

projective separator (FloWPS) [2]. 

We investigated FloWPS performance for seven popular ML methods, including linear SVM, k 

nearest neighbors (kNN), random forest (RF), Tikhonov (ridge) regression (RR), binomial naïve Bayes 

(BNB), adaptive boosting (ADA) and multi-layer perceptron (MLP). We performed computational 

experiments for 27 high throughput gene expression datasets (41–235 samples per dataset) 

corresponding to 2192 cancer patients with known responses on chemotherapy treatments. We showed 

that FloWPS essentially improved the classifier quality for all global ML methods (SVM, RF, BNB, ADA, 

MLP), where the AUC for the treatment response classifiers increased from 0.65–0.85 range to 0.78–

0.96. For all the datasets tested, the best performance of FloWPS data trimming was observed for the 

BNB method, which can be valuable for further building of ML classifiers in personalized oncology. 

Additionally, to test the robustness of FloWPS-empowered ML methods against overtraining, we 

interrogated agreement/consensus features between the different ML methods tested, which were used 

for building mathematical models for the classifiers. The lack of such agreement/consensus could 

indicate overtraining of the ML classifiers built, suggesting random noise instead of extracting 

significant features distinguishing between the treatment responders and non-responders. If ML 

methods indeed tend to amplify random noise during overtraining, then one could expect a lack of 

correlation between the features for geometrically different ML models. However, we found here that 

(i) there were statistically significant positive correlations between different ML methods in terms of 

relative feature importance, and (ii) that this correlation was enhanced for the ML methods with 

FloWPS. We, therefore, conclude that the beneficial role of FloWPS is not due to overtraining.  

2. Methods 

2.1. Clinically Annotated Molecular Datasets  

We used 27 publicly available datasets, including high throughput gene expression profiles 

associated with clinical outcomes of the respective patients [2,11,16]. The biosamples were obtained 

from tumor biopsies before chemotherapy treatments. The outcomes were response or lack of response 

on the therapy used, as defined in the original reports. 

The datasets preparation for the analysis included the following steps [2,17]: 

 Labelling each patient as either responder or non-responder on the therapy used; 

 For each dataset, finding top marker genes having the highest AUC values for distinguishing 

responder and non-responder classes; 
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 Performing the leave-one-out (LOO) cross-validation procedure to complete the robust core 

marker gene set used for building the ML model.  

4.2. Principles of Flexible Data Trimming 

We used several non-deep ML methods implemented in the Python sklearn library. For each ML 

method we used a data trimming/preprocessing step using FloWPS method (R package 

flowpspkg.tar.gz) to increase robustness and efficiency due to individual sample specific selection of 

training dataset [2,10]. Among the ML methods, we applied linear support vector machines (SVM), the 

k nearest neighbors (kNN), random forest (RF), ridge regression (RR), binomial naïve Bayes (BNB), 

adaptive boosting (APA) and multi-layer perceptron (MLP). To improve performance of ML, we used 

a recent data preprocessing/trimming technique termed floating-window projective separator 

(FloWPS). This method increases AUC for most of ML methods in most of the clinically annotated gene 

expression datasets investigated [2,10,11]. FloWPS improves the classifier robustness by performing 

dynamic data trimming and selecting sample-specific sets of relevant genes to prevent extrapolation in 

the feature space (described in detail in [2,10]). It prevents extrapolation in the feature space by 

excluding the features that cause such extrapolation. Second, it selects only k nearest neighbors for the 

training dataset to build a ML model similarly to the kNN method to avoid confusing interference from 

too distant points from the training dataset in the feature space. 

3. Results 

3.1. Performance of FloWPS for Equalized Datasets Using All ML Methods with Default Settings 

We used FloWPS in combination with seven ML methods, namely, linear support vector machines 

(SVM), k nearest neighbors (kNN), random forest (RF), ridge regression (RR), binomial naïve Bayes 

(BNB), adaptive boosting (ADA) and multi-layer perceptron (MLP). 

The basic quality characteristics, namely ROC AUC, sensitivity (SN) and specificity (SP), of seven 

above ML methods for discrimination between responders and non-responders in our 27 cancer 

datasets are shown in Table 1. Although different values of false positive vs. false negative importance 

balance factor B did not affect the ROC AUC characteristics, they were crucial for sensitivity and 

specificity.  

We found that the use of FloWPS has considerably improved the AUC metric for all global ML 

methods investigated (SVM, RF, BNB, ADA and MLP), but had no effect on the performance of local 

methods kNN and RR. For the global ML methods, FloWPS improved the classifier quality and 

increased AUC from 0.65–0.85 range to 0.78–0.96, and AUC median values—from 0.70–0.77 range to 

0.76–0.82 (Table 1). In addition, kNN and RR also showed poor SN and SP for B > 1 and B < 1, 

respectively. 

These findings are summarized in Table 1. Considering quality criterion of combining the highest 

AUC, the highest SN at B = 4 and the highest SP at B = 0.25, the top three methods identified for the 

default settings were BNB, MLP and RF.  

3.2. Correlation Study Between Different ML Methods at the Level of Feature Importance  

We showed positive pairwise correlations between the different ML methods at the level of 

relative importance (If, see [36]) of different features tested (Table 2). Greater similarities between If 

marks in the different ML methods reflect more robust applications of the ML. Importantly, the 

correlations for the ML methods with FloWPS were always higher than for the methods without 

FloWPS. This clearly suggests the beneficial role of FloWPS for extracting informative features from the 

noisy data. In this model, the biggest similarity was observed for the pair of RR and BNB methods. 

4. Conclusion 
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Many ML methods which were designed for global separation of different classes of points in the 

feature space are prone to overtraining when the number of preceding cases is low. Global ML methods 

may also fail if there is only local rather than global order in the placement of different classes in the 

feature space [8,36]. 

Table 1. Performance metrics for seven ML methods with default settings for datasets with equal 

numbers of responders and non-responders. 

ML 

Method 

Method 

Type 

Median AUC 

without 

FloWPS 

Median 

AUC with 

FloWPS 

Paired t-Test 

p-Value for 

AUC with-

vs.-w/o 

FloWPS  

Advantage 

of FloWPS 

Median SN 

at B = 4 

Median SP at 

B = 0.25 

SVM Global 0.74 0.80 1.3 × 10−5 Yes 0.45 0.42 

kNN Local 0.76 0.75 0.53 No 0.25 0.34 

RF Global 0.74 0.82 1.3 × 10-5 Yes 0.45 0.42 

RR Local 0.80 0.79 0.16 No 0.36 0.41 

BNB Global 0.77 0.82 2.7 × 10−4 Yes 0.51 0.58 

ADA Global 0.70 0.76 2.4 × 10−4 Yes 0.32 0.41 

MLP Global 0.73 0.82 6.4 × 10−5 Yes 0.53 0.53 

Yes–FloWPS is beneficial for ML quality, No–FloWPS is not beneficial for ML quality. 

Table 2. Median pairwise Pearson/Spearman correlation at feature (gene expression) importance (If) 

level. Figures above main diagonal: With FloWPS; figures below: Without FloWPS. 

 SVM RF RR BNB MLP 

SVM 1 0.53/0.55 0.40/0.39 0.37/0.34 0.46/0.46 

RF 0.34/0.40 1 0.51/0.32 0.48/0.31 0.59/0.38 

RR 0.19/0.14 0.35/0.04 1 0.93/0.79 0.89/0.52 

BNB 0.24/0.14 0.33/0.09 0.88/0.64 1 0.81/0.46 

MLP 0.33/0.30 0.40/0.17 0.76/0.06 0.61/0.12 1 

To improve performance of ML, FloWPS approach includes some elements of the local methods, 

e.g., using the flexible data trimming that avoids extrapolation in the feature space for each validation 

point and by selecting only several nearest neighbors from the training dataset. In such a way, the 

whole ML classifier becomes hybrid, both global and local [8,36]. 

In this hybrid approach, for each validation point training of ML models is performed in the 

individually tailored feature space. Every validation point is surrounded by a floating window from 

the points of the training dataset, and the irrelevant features are avoided using the rectangular 

projections in the feature space. 

Overtraining, together with extrapolation, is very frequently considered also an Achilles heel of 

ML. We, therefore, tested if FloWPS helps to extract truly significant features or if it simply adapts to 

random noise, thus, causing overfitting. We compared four global ML methods (SVM, RF, BNB and 

MLP) and one local ML method (RR) to check similarities between them in terms of relative importance 

of distinct individual features. We confirmed that all these five ML methods were positively correlated 

at the level of feature importance (Table 2). Moreover, using FloWPS significantly enhanced such 
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correlations in all the cases examined (Table 2). These results clearly suggest that FloWPS is helpful for 

extracting relevant information rather than merely follows the random noise and overfits the ML 

model. 

Overall, we propose that using correlations between different ML methods at the level of relative 

importance of distinct features may be used as an evaluation metric of ML suitability for building 

classifiers utilizing omics data. In this case, the higher is the correlation, the bigger should be the 

probability that the separation of responders from non-responders is robust and non-overtrained. 
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