# **Covalently Cross-linked Particles based on Arabinoxylans:** Antioxidant Activity and Cytotoxicity on a Human Colon Cell Line

Mayra A. Mendez-Encinas <sup>1,2</sup>, Elizabeth Carvajal-Millan <sup>1</sup>, Dora E. Valencia-Rivera <sup>2</sup>, Agustín Rascon-Chu <sup>1</sup>, Humberto Astiazaran-Garcia<sup>1</sup>

<sup>1</sup> Research Center for Food and Development (CIAD). Hermosillo, Sonora 83304, Mexico. Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Caborca, Sonora 83621, Mexico.



## INTRODUCTION

Polysaccharide-based carriers have become attractive materials for the delivery of therapeutics targeted to colon. Ferulated arabinoxylans (AX), polysaccharides with gelling and antioxidant capacities that can be degraded by colonic microbiota are ideal candidates for use as oral drug delivery systems. Recently, AX-based microspheres have demonstrated potential applications as colon-targeted drug carriers. The non-cytotoxicity of AX-based microspheres is a required property for their use as a colon-targeted biomaterial. This study reports the antioxidant activity and cytotoxicity on human colon cells of covalently cross-linked particles based on AX (AXP).

**OBJECTIVE:** Investigate the antioxidant capacity and cytotoxicity of AXP on human colon cells.



#### Table 1. Antioxidant activity of AX before and after gelation.

|        | Antioxidant Activity <sup>a</sup> (µmol TEAC/g) |              |                  |
|--------|-------------------------------------------------|--------------|------------------|
| Sample | ABTS <sup>+</sup>                               | DPPH         | FRAP             |
| AX     | 68.05 ± 0.53                                    | 32.23 ± 0.50 | $48.41 \pm 1.07$ |
| ΑΧΡ    | 26.02 ± 3.82                                    | 12.58 ± 0.45 | 16.83 ± 0.83     |

<sup>a</sup> TEAC, in µmol/g AX or AX gel. All values are means ± standard deviation of duplicate.



Figure 4. Optical micrographs of CCD 841 CoN cells. (a) Control, (b) treated with AX, (c) treated with AXP and (d) treated with doxorubicin for 24 h. Cells were treated with 1000  $\mu$ g/mL of AX and AXM, and 2.7  $\mu$ g/mL of doxorubicin. Magnification 200×.

#### **ACKNOWLEDGMENTS**

The authors are pleased to acknowledge Alma C. Campa-Mada and Karla G. Martinez-Robinson (CIAD) for technical assistance and Francisco Brown-Bojorquez (UNISON) for the microscopy analysis.

Figure 3. Effect of (a) AX and AXM and (b) doxorubicin on the cell proliferation of CCD 841 CoN. Cells were incubated with different concentrations of AX, AXP, and doxorubicin in cell culture medium for 48 h before cell proliferation was measured. Significant differences (p < 0.05) from dissolvent control are marked with asterisk

#### **CONCLUSION**

Gelation decreased the antioxidant activity of AX by 61–64 %. AX and AXP did not affect proliferation or show any toxic effect on the regular human colon cell line CCD 841 CoN. AXP are promising biocompatible materials with antioxidant activity. AXP could be suitable materials for the development of drug delivery systems targeted to colon.

### REFERENCES

- Benzie IFF, Strain JJ. Anal Biochem. 1996;239(1):70-6. 1.
- 2. Usia, T, Banskota, AH., et al. J Nat Prod. 2002;65(5):673–676.
- Martínez-López AL, Carvajal-Millan E, et al. Food Composition and Analysis: 3. Methods and Strategies. Toronto: CRC Press; 2014. p. 19–28.
- Mosmann TJ. Immunol Methods. 1983;65:55–63. 4.