ECB 2021 The 1st International Electronic Conference on Biomedicine 01-26 JUNE 2021 | ONLINE

Acute and Chronic Effects of Medium-Chain Triglyceride Supplementation on Metabolic Parameters and Working Memory in Rats

Ksenia Shcherbakova ^{1,*}, Alexander Schwarz ^{1,2}, Irina Ivleva ¹, Veronika Nikitina ¹, Darya Krytskaya ¹, Sergey Apryatin ¹, Marina Karpenko ¹, and Alexander Trofimov ^{1,*}

 ¹ Institute of Experimental Medicine, 12 Akad. Pavlova st., 197376, Saint Petersburg, Russia
 ² I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Prospekt Toreza, 194223, Saint Petersburg, Russia

* Corresponding authors: KS: shcherbakova.ksenia.jp@gmail.com; AT: alexander.n.trofimov@gmail.com

Medium-Chain Fatty Acids and Triglycerides

Neuroprotective Effects of Ketosis

↓ inflammation ↓ oxidative stress ↓ apoptosis

↑ energy metabolism
↑ GABA levels
↑ neuronal membrane repolarization

* changes in neuroplasticity gene expression

Strategies to induce ketosis:

- Ketogenic diet / Starvation (sustained ketosis)
- Ketogenic supplements (intermittent ketosis)
 - MCT
 - KB salts and esters

Ketone bodies:

Documented MCFA Diet Effects on Metabolic Markers

Parameter	Effect	Reference
Liver TG accumulation	↑	Wein et al., 2009
	\downarrow	Lieber et al., 2008
	no effect	Baba et al., 1982, Lieber et al., 2008
Fasting plasma TG levels	↑	Bray et al., 1980; Geelen et al., 1995; Hill et al., 1990; Tholstrup et al., 2004
	\downarrow	Edens & Friedman, 1984; Jeffery et al., 1997; Wein et al., 2009
	no effect	Asakura et al., 2000
Fasting plasma total cholesterol	↑	Asakura et al., 2000; Hill et al., 1990; Tholstrup et al., 2004
	\downarrow	Han et al., 2007
	no effect	Schwartz et al., 1989

2021

Experimental Design

MCT (C8+C10) Dose

Typical human dose: 20-30 g (~0.3-0.5 g/kg)

Rat dose in out experiment (conversion coefficient: 6.1): 3 g/kg

Experimental Design

Chronic MCT administration

Y Maze: Spontaneous Alternations (Working Memory)

 \star – MCT vs. Lard difference: linear regression

— fat vs. control difference: ANOVA and Tukey post hoc

+ - MCT vs. the respective-time-point Lard difference: ANOVA and Tukey post hoc

*, #, † - P < .05 **, ##, †† - P < .01 ***, ###, ††† - P < .001 ****, ####, †††† - P < .0001

ંં

Y Maze: Arm Entries (Locomotive Activity)

★ − MCT vs. Lard difference: linear regression

- fat vs. control difference: ANOVA and Tukey post hoc

t – MCT vs. the respective-time-point Lard difference: ANOVA and Tukey post hoc

Markers of Metabolic Health

★ − MCT vs. Lard difference: linear regression

— fat vs. control difference: ANOVA and Tukey *post hoc*

t – MCT vs. the respective-time-point Lard difference: ANOVA and Tukey post hoc

Markers of Metabolic Health

★ − MCT vs. Lard difference: linear regression

— fat vs. control difference: ANOVA and Tukey *post hoc*

t – MCT vs. the respective-time-point Lard difference: ANOVA and Tukey post hoc

Markers of Metabolic Health

★ − MCT vs. Lard difference: linear regression

— fat vs. control difference: ANOVA and Tukey post hoc

† – MCT vs. the respective-time-point Lard difference: ANOVA and Tukey *post hoc*

Markers of Metabolic Health

- **★** − MCT vs. Lard difference: linear regression
- # fat vs. control difference: ANOVA and Tukey *post hoc*
- t MCT vs. the respective-time-point Lard difference: ANOVA and Tukey post hoc

Markers of Metabolic Health

★ - MCT vs. Lard difference: linear regression

— fat vs. control difference: ANOVA and Tukey *post hoc*

† – MCT vs. the respective-time-point Lard difference: ANOVA and Tukey *post hoc*

Markers of Metabolic Health

- ★ MCT vs. Lard difference: linear regression
- # fat vs. control difference: ANOVA and Tukey *post hoc*
- + MCT vs. the respective-time-point Lard difference: ANOVA and Tukey post hoc

Conclusions

MCT supplementation (3 g/kg) in young adult rats:

- established intermittent mild ketosis without dietary restrictions
- improved working memory
- had no effect on locomotive activity
- did not adversely affect metabolic health markers over 28 days
- acutely, MCT elevated blood MDA level to the same extend as lard
- more studies are needed to assess long-term effects
- the established administration protocol may be used to study the mechanisms of MCT-related effects on the brain

Acknowledgments

This research was funded by the Russian Science Foundation, grant number 19-75-10076

