

2

3

4

5

6

7 8

9

10

11

24

25

42

Proceedings Modelling in human biometeorology: spatial-temporal analysis

of thermal indices

Andreas Matzarakis^{1,2*,†}, Marcel Gangwisch^{1,2} and Tim Herbert²

- Research Centre Human Biometeorology, German Meteorological Service, Stefan-Meier-Str. 4, D-79104 Freiburg, Germany; andreas.matzarakis@dwd.de
- ² Chair of Environmental Meteorology, Institute of Earth and Environmental Sciences, Faculty of Environment and Natural Resources, University of Freiburg, 79085 Freiburg, Germany, andreas.matzarakis@meteo.uni-freiburg.de
- * Correspondence: andreas.matzarakis@dwd.de
- + Presented at the title, place, and date.

Abstract: The issue of the quantification of thermal comfort or heat stress on humans is on vogue 12 nowadays. This is evident for indices, which are trying to quantify these effects. Most known indices 13 are PET, modified PET, SET*, PT and UTCI. All thermal indices require the same thermos-physio-14logical and meteorological parameters. Air temperature, air humidity, wind speed, as well as short 15 and long wave radiation fluxes in terms of the mean radiant temperature are the required meteoro-16 logical parameter. For the human thermos-physiology information about heat production and cloth-17 ing are required. Especially the meteorological parameter have to be available in an appropriate 18 spatial and temporal scale depending on the target and the specific issues demanded. The appro-19 priate spatial and temporal resolution data cannot only be delivered by measurement stations. Meso 20 and micro scale models, which compute not only the meteorological parameter but also thermal 21 indices, which can be helpful in the development of mitigation and adaptation strategies in the era 22 of climate change. 23

Keywords: Human biometeorology, thermal indices, modeling, heat stress, PET, mPET, UTCI

1. Introduction

For the selection of appropriate measures against climate change, municipalities and 26 architects require quantitative information about the effect of their urban design and plan-27 ning of open spaces and reconstructions. While this kind of information was hard to ob-28 tain in the past, numeric models can now easily generate it. The model in question thereby 29 should be fast and easy to use by non-experts so the respective planners in charge can 30 apply them. At the same time, they need to generate all required information in an integral 31 and intuitively understandable way [1,2]. For the case of thermal comfort and thermal 32 stress, the latter can be best fulfilled by the application of thermal indices [3]. Sophisticated 33 modern thermal indices do consider the integral effect of the environment in terms of the 34 meteorological parameters air temperature (T_a) , vapor pressure (VP), wind velocity (v)35 and the different radiation fluxes in terms of the mean radiant temperature (T_{mrt}) [3,4]. In 36 addition, these indices incorporate personal parameters like weight, height, workload, 37 metabolism, posture and clothing of a sample person and approximate the thermal per-38 ception by solving the human energy balance or the respective energy fluxes [5]. The re-39 sult thereby should be presented in a unit, which can be judged sufficiently by non-ex-40 perts, e.g. SI-unit "°C" based on the concept of an equivalent temperature[6,7]. 41

Citation: Matzarakis, A.; Gangwisch, M; Herbert, T. Modelling in human biometeorology: spatial-temporal analysis of thermal indices. *Proceedings* **2021**, 65, x.

https://doi.org/10.3390/xxxxx

Received: date Accepted: date Published: date

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

2. Methods

2.1. Thermal indices

The application of thermal indices based on the human energy balance provides de-3 tailed information on the effect of complex thermal environments on humans [3,8]. Com-4 monly used thermal indices, based on the human energy balance [5], are Physiologically 5 Equivalent Temperature [6,7], Perceived Temperature [9], Universal Thermal Climate In-6 dex [10] and modified Physiologically Equivalent Temperature [11]. All thermal indices 7 mentioned above require the same meteorological input parameter: air temperature, air 8 humidity, wind speed, as well as short- and long wave radiation fluxes considered by 9 their integral effect as the mean radiant temperature. These input parameters have a tem-10 poral and spatial variability that has a huge influence on the thermal indices. Wind speed 11 and mean radiant temperature have the highest variability and are severely modified by 12 surroundings and obstacles in complex urban areas [12]. 13

2.2 Descriptive analysis of the urban heat island effects on meteorological conditions based on *beanplots*

For the comparison of an urban and a rural site, in the interest of the analysis of the urban heat island (UHI), two meteorological stations of the German Meteorological Service in Freiburg, Germany were analyzed. One station is located in a rural area, close to the airport of Freiburg, and the urban station is located in the city center of Freiburg, which is affected by surrounding buildings and trees. Freiburg is situated in the southwest of Germany. The analysis covers the period from July 2018 to February 2021, using a temporal resolution of 10 minutes for each measurement.

Boxplots have been a widely used technique for descriptive statistics for many years. 23 They have the advantage of being easy to compute and displaying five important values 24 that summarize the data under investigation (Min, Max, Mean, Median and Quantiles). 25 However, earlier studies revealed some problems in the interpretation of boxplots by non-26 scientific observers. Nevertheless, with today's computation possibilities, more information can be displayed in the same space. Therefore, an alternative to the boxplot, the beanplots according to [13], is presented by means of typical example from urban clima-29 tological data [14]. 30

A dataset was imported into the RayMan-Model in order to calculate PET, as well as T_{mrt} . The dataset contained the values of air temperature (T_a) , relative humidity (RH), global radiation (G) and the transformed wind velocity (v) at a height of 1.1 m.

Wind velocity was transformed in accordance to the following altitude correction after [15-17]:

$$v_{1.1} = v_h \cdot \frac{1.1^{\alpha}}{h}$$
 and $\alpha = 0.12 \cdot z_0 + 0.18$

For the simulation of the two stations the surroundings were not considered. In the final step the received output was processed and visualized.[18]

2.3. RayMan model

The RayMan model is developed to calculate short- and long wave radiation fluxes 42 affecting the human body. The model considers complex building structures and is suita-43 ble for the analysis of the effect of various planning scenarios in different micro to regional 44 scales. The model calculates the mean radiant temperature, which is required for the hu-45 man energy balance model and, thus, for the assessment of human thermal bioclimate 46 [12,19-21]. The thermal indices Standard Effective Temperature (SET), PET, UTCI, PT and 47 mPET can be calculated [12,19-21]. In addition, information about urban structures (build-48 ings, deciduous and coniferous trees) can be generated or imported. Based on the input 49 possibilities, sunshine duration with or without sky view factor (SVF), estimation of the 50

1

2

14

15

19

20

21

22

31 32

33

34

40 41

25

daily mean, max or sum of global radiation or shadow for existing or future complex environments can be calculated. For the estimation of thermal indices, meteorological data
can be entered through manual input or by loading custom data files with time series data.
The output is provided as graphs and comma separated text files (CSV). RayMan offers
the opportunity of importing long-term data sets of meteorological parameters allowing
for statistical assessments [21].

2.4. SkyHelios model

SkyHelios [21-24] is an urban micro scale model, having the ability to estimate crucial 8 parameters of the urban environment spatially resolved (Fehler! Verweisquelle konnte 9 nicht gefunden werden.). It is a steady-state, time-independent model, capable of esti-10 mating several thermal indices [12]: PET, UTCI, PT and mPET. Furthermore, SkyHelios is 11 able to compute different environmental factors: sunshine duration, shading, wind speed 12 and direction for areas of interest (AOIs), as well as points of interest (POIs). By creating 13 virtual, three-dimensional (3D) scenes from 3D urban geoinformation (e.g. CityGML LOD 14 0, 1 and 3D-Shapefiles), SkyHelios can be classified as a 3D city model. All 3D entities in 15 the 3D scene are based on vectorial geodata, allowing for the specification of spatial reso-16 lution for all results on demand. The 3D scene is managed by the Object-Oriented 17 Graphics Rendering Engine [25]. The surfaces of the entities in the 3D scene are rendered 18 according to the surface radiational material properties: shortwave transparency, 19 shortwave albedo and longwave emission coefficient. SkyHelios comprise a diagnostic 20 wind model after [26] with modifications after [27] to estimate wind velocity and -direc-21 tion (WD). Using all this information together, SkyHelios is capable of estimating the ther-22 mal indices PET, PT and UTCI spatially resolved in high spatial resolution of e.g. 1 m on 23 1 m [21]. 24

Figure 1. Main window of SkyHelios showing a 3D-scene of Rieselfeld, an urban district in Freiburg, Germany. The scene covers the footprint of all buildings in combination with urban trees.

2.5 Application of the urban microscale models for the study area Rieselfeld in Freiburg, *Germany*

A study area in the West of Freiburg, the urban quarter Rieselfeld is selected for this study. Detailed spatial input of the buildings in terms of a level of detail (LOD) 1, as well as a LOD 2 city model (based on the CityGML data format [28] and an urban tree cadaster, was provided by the municipality of Freiburg. The model is applied for the specified spatial resolution of 1 m, resulting in a discrete model domain of 1054 on 916 grid cells. All 31

28

8

9

18

1

Center (CDC). 4 The meteorological input comprises the parameters air temperature (°*C*), relative humidity (%), air pressure (*hPa*), wind speed ($m \cdot s^{-1}$) and direction (°), as well as global 6 radiation ($W \cdot m^{-2}$) for the whole day in 10-min temporal resolution. 7

results are assessed for the target height of 1.1 m as the center of gravity of the human

body. As a sample dataset, records of the official weather station: Freiburg airport of the

German Meteorological Service were selected, providing the data via the Climate Data

3. Results

3.1 Evaluation of Beanplots for the assessment of the bioclimate in Freiburg, Germany

The meteorological input parameters (T_a , RH, v, T_{mrt}) and the thermal index PET 10 are shown in Figure 2 and Figure 3 with the aid of the statistical R programming language. 11

The air temperature distribution of both stations are shown in Figure 2a with the 12 absolute frequency on the x-axis. The mean condition show that for the examined period 13 the urban location has a mean air temperature of $13.1 \,^{\circ}$ C and the rural $11.9 \,^{\circ}$ C, respectively. The shape of the bean differs, indicating that for cold conditions the station in the 15 city is warmer and represents therefore the mean intensity of the urban heat island 16 throughout this period. 17

Figure 2. Beanplots for the meteorological input parameter for thermal indices calculation. (a) Air21temperature (°C); (b) relative humidity (%); (c) wind speed $(m \cdot s^{-1})$; (d) mean radiant temperature22(°C). The black horizontal line represents the median. Period of time: 1. July 2018 to 28. February232021. The distance between the rural and urban station in Freiburg is about four kilometers.24

5

6

The distribution of vapor pressure in the city is in the same order of magnitude as at 1 the rural station. The mean conditions are 10.3 hPa for the urban and 10.4 hPa for the rural 2 station (Figure 2b), respectively. 3

Mean wind speed at the rural station (2.6 m/s) is significantly increased compared to the urban station (0.8 m/s) (Figure 2c). This can be explained by the increased aerody-namic roughness of the surroundings urban structures in the city center.

The distribution of mean radiant temperature (Figure 2d) is slightly different between the rural and urban station. Due to shading from surrounding buildings, high values for T_{mrt} (in the range of 30 °C to 55 °C) are more common at the rural station. The sky 9 view factor here is close to 1. Conversely, low values for T_{mrt} also occur more frequently 10 at the rural station. Depending on the surface properties of the surrounding buildings 11 (albedo and emissivity), the long-wave radiation as well as the reflections of the buildings 12 influence the measured mean radiation temperature. 13

The mean value of PET (Figure 3) in urban areas is $10.8 \,^{\circ}$ C and for rural $8.3 \,^{\circ}$ C, respectively. The distribution is similar, but in comparison to air temperature (urban $13.1 \,^{\circ}$ C 15 and rural $11.9 \,^{\circ}$ C) the shape of the distribution is different with a higher range of PET for both stations. The shape is dissimilar because the most influencing factors are those with the highest variability, which are wind speed and mean radiant temperature. The highest values can be found in the urban area and the minimum conditions are slightly warmer in the city. 20

Figure 3. Beanplot for Physiologically Equivalent Temperature (°*C*). Time period: 1. July 2018 to 28. February 2021 in Freiburg. The distance between the rural and urban station in Freiburg is about four kilometers.

22 23 24

Figure 4. Thermal comfort, based on PET in 1.1 m above ground level for a residential neighborhood in Freiburg, Germany at 13:00 LST, 1st of April (left) and 1st of July (right)

3.2 Assessment of spatially resolved thermal indices in Freiburg, Germany

Spatially resolved PET varies in April between 18.7 °C and 44.6 °C with an average of 29.2 °C and in July between 19.6 °C and 47.6 °C with an average of 30.0 °C (Figure 4). The effect of shading and the impact of decreased wind speed on PET is observable on the lee side of each building.

In April, an area of 9796.19 m² of 78659.98 m² is shaded (12.45 %, 1052.06 m² by trees (1.33 %) and 8744.13 m² by buildings (11.11 %)). In July, an area of 5430.05 m² of 78659.98 m² is shaded (6.90 %, 981.36 m² by trees (1.24 %) and 4448.69 m² by buildings (5.65 %)). The shaded area by trees is decreased by 70.70 m² (6.72 %) while by buildings by 4295.44 m² (49.12 %), due to raise of the solar altitude angle from April to July.

4. Discussion

The beanplots provide a good possibility for the comparison of urban rural station 17 and the distribution of the results. It can be clearly seen the differences in the different 18 meteorological input parameters and their effect on thermal indices. Spatially resolved 19 thermal indices visualized as thermal comfort maps can help to identify areas that need 20 to be improved in terms of thermal comfort and heat stress. Thereby providing relevant 21 information concentering climate change and for the development of adaptation possibil-22 ities at the micro scale of urban environments. As thermal comfort conditions can be cal-23 culated and visualized very fast by the SkyHelios model, several scenarios can be ana-24 lyzed to support urban planning as shown in this study. The rapid assessment method 25 also allows for the calculation of long time series especially with the RayMan model. 26

The results of the case study presented here indicate that thermal (heat) stress can be 27 reduced most effectively by providing shade [29]. Shaded areas can be generated by build-28 ings, as well as by urban trees. While both are shown to reduce PET quite effectively, areas 29 shaded by trees are found to be slightly more comfortable in terms of PET in this case 30 study. This is in very good agreement with various other studies investigating the impact 31 of urban green on heat stress represented by some thermal index, e.g. [30,31]. It must be 32 noted, that the SkyHelios model currently does not consider spatial variations in T_a and 33 VP for the calculation of thermal indices. Surfaces in the model domain are not coupled 34

1

3 4 5

2

6 7 8

9

10 11 12

13

14 15

2

3

9

10

11

12

13

14

15

16 17

to the atmosphere with respect to heat transfer and mass transfer, whereas the cooling effect by transpiration on leaf surface temperature [32].

5. Conclusions

Atmosphere 2018, 9, doi: https://doi.org/10.3390/atmos9060209.

Using all this information together, RayMan and SkyHelios will be capable of estimating the thermal indices PET, PT and UTCI spatially resolved in high spatial resolution 5 of e.g. 1 m on 1 m under consideration of the physiological processes of urban vegetation 6 and buildings configurations. Overall, it is shown that micro scale models like SkyHelios 7 and RayMan can provide valuable information for architects, land- and urban planners. 8

Author Contributions: Conceptualization, A.M.; methodology, A.M.; software, T.H. and M.G.; validation, M.G. and T.H.; formal analysis, M.G.; investigation, T.H.; resources, A.M.; data curation, T.H.; writing—original draft preparation, A.M.; writing—review and editing, A.M., M.G. and T.H.; visualization, T.H. and M.G.; supervision, A.M.

Funding: This research received no external funding.

Conflicts of Interest: The author declare no conflict of interest.

References

	17
Matzarakis, A. A Note on the Assessment of the Effect of Atmospheric Factors and Components on Humans. Atmosphere	18
2020 , <i>11</i> , 1283, doi: <u>https://doi.org/10.3390/atmos11121283</u> .	19
Matzarakis, A. Comments about Urban Bioclimate Aspects for Consideration in Urban Climate and Planning Issues in the	20
Era of Climate Change. 2021 , doi: <u>https://doi.org/10.3390/atmos12050546</u> .	21
Staiger, H.; Laschewski, G.; Matzarakis, A. Selection of appropriate thermal indices for applications in human	22
biometeorological studies. Atmosphere 2019, 10, 18, doi: https://doi.org/10.3390/atmos1000100018.	23
VDI Guideline 3787/Part 2. Environmental meteorology, Methods for the human biometeorological evaluation of climate	24
and air quality for urban and regional planning at regional level: Part I: Climate. In VDI/DIN Handbuch Reinhaltung der Luft,	25
Band 1B: Umweltmeteorologie, KRdL, K.R.d.L.i.V.u.DN., Ed.; Beuth-Verlag: Berlin, 2008; Volume 2, pp. 1-32.	26
Fanger, P.O. Thermal comfort. Analysis and applications in environmental engineering; Copenhagen: Danish Technical Press.:	27
1970; р. 244 рр.	28
Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: physiological equivalent temperature.	29
International journal of biometeorology 1999 , 43, 76-84.	30
Höppe, P. The physiological equivalent temperature-a universal index for the biometeorological assessment of the thermal	31
environment. International journal of Biometeorology 1999, 43, 71-75.	32
Potchter, O.; Cohen, P.; Lin, TP.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive	33
review of approaches, methods and quantification. Science of The Total Environment 2018, 631-632, 390-406,	34
doi: <u>https://doi.org/10.1016/j.scitotenv.2018.02.276</u> .	35
Staiger, H.; Laschewski, G.; Gratz, A. The perceived temperature - a versatile index for the assessment of the human thermal	36
environment. Part A: scientific basics. International Journal of Biometeorolgy 2012, 56, 165-176,	37
doi: <u>https://doi.org/10.1007/s00484-011-0409-6</u> .	38
Jendritzky, G.; de Dear, R.; Havenith, G. UTCIwhy another thermal index? International Journal of Biometeorology 2012, 56,	39
421-428, doi: <u>https://doi.org/10.1007/s00484-011-0513-7</u> .	40
Chen, YC.; Matzarakis, A. Modified physiologically equivalent temperature-Basics and applications for western	41
European climate. Theoretical and Applied Climatology 2018, 132, 1275-1289, doi: <u>https://doi.org/10.1007/s00704-017-2158-x</u> .	42
Fröhlich, D.; Matzarakis, A. Spatial Estimation of Thermal Indices in Urban Areas-Basics of the SkyHelios Model.	43
	 Matzarakis, A. A Note on the Assessment of the Effect of Atmospheric Factors and Components on Humans. <i>Atmosphere</i> 2020, <i>11</i>, 1283, doi:https://doi.org/10.3390/atmos11121283. Matzarakis, A. Comments about Urban Bioclimate Aspects for Consideration in Urban Climate and Planning Issues in the Era of Climate Change. 2021, doi:https://doi.org/10.3390/atmos12050546. Staiger, H.; Laschewski, G.; Matzarakis, A. Selection of appropriate thermal indices for applications in human biometeorological studies. <i>Atmosphere</i> 2019, <i>10</i>, 18, doi:https://doi.org/10.3390/atmos1000100018. VDI Guideline 3787/Part 2. Environmental meteorology, Methods for the human biometeorological evaluation of climate and air quality for urban and regional planning at regional level: Part I: Climate. In <i>VDI/DIN Handbuch Reinhaltung der Luft, Band 1B: Umweltmeteorologie</i>, KRdL, K.R.d.L.i.V.u.DN., Ed.; Beuth-Verlag: Berlin, 2008; Volume 2, pp. 1-32. Fanger, P.O. <i>Thermal comfort. Analysis and applications in environmental engineering;</i> Copenhagen: Danish Technical Press.: 1970; p. 244 pp. Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: physiological equivalent temperature. <i>International journal of biometeorology</i> 1999, 43, 71-75. Potchter, O.; Cohen, P.; Lin, TP.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. <i>Science of The Total Environment</i> 2018, 631-632, 390-406, doi:https://doi.org/10.1016/j.scitotenv.2018.02.276. Staiger, H.; Laschewski, G.; Gratz, A. The perceived temperature - a versatile index for the assessment of the human thermal environment. <i>Part A: scientific basics. International Journal of Biometeorology</i> 2012, <i>56</i>, 165-176, doi:https://doi.org/10.1007/s00484-011-0409-6. Jendritzky, G.; de Dear, R.; Havenith, G. UTCI-why another thermal index? <i>International Journal of Biometeorology</i> 2012, <i>56</i>, 421-428, doi:https://doi

13.	Kampstra, P. Beanplot: A boxplot alternative for visual comparison of distributions. <i>Journal of statistical software</i> 2008, 28, 1-
	9.

- 14.
 Muthers, S.; Matzarakis, A. Use of beanplots in applied climatology A comparison with boxplots. *Meteorologische Zeitschrift* 3

 2010, 19, 641-644, doi:
 <u>https://doi.org/10.1127/0941-2948/2010/0485</u>.
 4
- Köpke, P.; Schönwiese, C.-D.; Heimann, M.; Kuttler, W. Auswirkungen atmosphärischer Spurenstoffe auf Strahlung und
 Klima. In *Handbuch der Umweltveränderungen und Ökotoxikologie*; Springer: 2000; pp. 297-470.
- Matzarakis, A.; De Rocco, M.; Najjar, G. Thermal bioclimate in Strasbourg the 2003 heat wave. *Theoretical and Applied* 7 *Climatology* 2009, 98, 209-220, doi:https://doi.org/10.1007/s00704-009-0102-4.
- 17. Ketterer, C.; Gangwisch, M.; Frohlich, D.; Matzarakis, A. Comparison of selected approaches for urban roughness 9 determination based voronoi cells. International Journal of Biometeorology 2017, 61, 189-198, on 10 doi:https://doi.org/10.1007/s00484-016-1203-2. 11
- 18. R Core Team R: A Language and Environment for Statistical Computing (Version 3.5. 2, R Foundation for Statistical Computing, 12 Vienna, Austria, 2018), 2019.
 13
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments--application of the RayMan model. *International Journal of Biometeorology* 2007, *51*, 323-334, doi:<u>https://doi.org/10.1007/s00484-006-0061-8</u>.
- 20. Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. *International Journal of Biometeorology* **2010**, *54*, 131-139, doi:<u>https://doi.org/10.1007/s00484-009-0261-0</u>.
- Matzarakis, A.; Gangwisch, M.; Fröhlich, D. RayMan and SkyHelios Model. In *Urban Microclimate Modelling for Comfort and Energy Studies*, Palme, M., Salvati, A., Eds.; Springer International Publishing: 2021; pp. 339-361.
- Matuschek, O.; Matzarakis, A. Estimation of sky view factor in complex environment as a tool for applied climatological studies. *Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg* 2010, 20, 534-539.
- Matzarakis, A.; Matuschek, O. Sky view factor as a parameter in applied climatology rapid estimation by the SkyHelios
 model. *Meteorologische Zeitschrift* 2011, 20, 39-45, doi:<u>https://doi.org/10.1127/0941-2948/2011/0499</u>.
- Matzarakis, A.; Fröhlich, D. Influence of urban green on human thermal bioclimate-application of thermal indices and micro-scale models. In Proceedings of the International Symposium on Greener Cities for More Efficient Ecosystem Services in a Climate Changing World 1215, 2017; pp. 1-10.
- 25. Ogre Development Team *OGRE–Open Source 3D Graphics Engine*, 2021.
- 26. Röckle, R. Bestimmung der Strömungsverhältnisse im Bereich komplexer Bebauungsstrukturen; na: 1990.
- 27. Singh, B.; Hansen, B.S.; Brown, M.J.; Pardyjak, E.R. Evaluation of the QUIC-URB fast response urban wind model for a cubical building array and wide building street canyon. *Environmental fluid mechanics* **2008**, *8*, 281-312.
- 28. Gröger, G.; Kolbe, T.H.; Nagel, C.; Häfele, K.-H. OGC city geography markup language (CityGML) encoding standard. 2012. 31
- Hwang, R.-L.; Lin, T.-P.; Matzarakis, A. Seasonal effects of urban street shading on long-term outdoor thermal comfort.
 Building and Environment 2011, 46, 863-870, doi:<u>https://doi.org/10.1016/j.buildenv.2010.10.017</u>.
- de Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Effect of tree planting design and tree species on human thermal
 comfort in the tropics. *Landscape and Urban Planning* 2015, 138, 99-109, doi:<u>https://doi.org/10.1016/j.landurbplan.2015.02.008</u>.
- Santos Nouri, A.; Fröhlich, D.; Matos Silva, M.; Matzarakis, A. The Impact of Tipuana tipu Species on Local Human Thermal
 Comfort Thresholds in Different Urban Canyon Cases in Mediterranean Climates: Lisbon, Portugal. *Atmosphere* 2018, 9,
 doi:https://doi.org/10.3390/atmos9010012.
- Fröhlich, D.; Gangwisch, M.; Matzarakis, A. Effect of radiation and wind on thermal comfort in urban environments 39
 Application of the RayMan and SkyHelios model. *Urban Climate* 2019, 27, 1-7, doi:<u>https://doi.org/10.1016/j.uclim.2018.10.006</u>. 40

16

17

27

28

29

30