Antidepressant-like Effects of Kynurenic Acid Analougues

Masaru Tanaka 1,2, Ágnes Szabó 2, Bálint Lőrinczi 3,4, István Szatmári 3,4, Ferenc Fülöp 3,4, and László Vécsei 1,2,*
1 MTA-SZTE, Neuroscience Research Group; 2 Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged; 3 Institute of Pharmaceutical Chemistry and Research Group for Stereochemistry, Hungarian Academy of Sciences, University of Szeged; 4 Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary. *: Corresponding author

Abstract

• Kynurenic acid (KYNA) - a metabolite of the L-tryptophan (TRP)-kynurenine (KYN) metabolic pathway
• KYNA triggered antidepressant-like effects intracerebroventricularly (i.c.v.) in modified forced swimming test (FST) of mouse
• KYNA is impermeable to the blood-brain-barrier (BBB)
• New KYNA analogues permeable to the BBB in vitro - SZR72, SZR81, SZR104
• KYNA analogues (i.c.v.)
 - SZR72: no effect
 - SZR81: antidepressant-like effect
 - SZR104: no effect
• KYNA analogues intraperitoneally (i.p.)
 - SZR72: no effect
 - SZR81: no effect
 - SZR104: no effect
• KYNA analogues
 - Changed biological properties?
 - Impermeable to the BBB in vivo?
 - Peripherally metabolized?

Conclusion

• i.c.v. administration of SZR81 significantly decreased immobility time and significantly increased swimming time
• The antidepressant-like effects were triggered at least in part through the serotonin 5-HT nervous system
• SZR72 and SZR104 may have lost original biological activities upon i.p. administration
• SZR72 and SZR104 may not cross the BBB in vivo
• Findings in this study may be limited to the dose tested

Introduction

• TRP-KYN metabolic pathway
 - > 95% TRP metabolized in the pathway
 - Synthesizes various bioactive molecules
 - Oxidants, antioxidants
 - Neurotoxins, neuroprotective
 - Immunomodulators
• KYNA
 - Antioxidant
 - Neuroprotective
 - Antidepressant-like
 - KYNA impermeable to the BBB

Materials and Methods

• Ethics: The Committee of Animal Research at the University of Szeged (I.74-24/2018) and the Scientific Ethics Committee for Animal Research of the Protection of Animals Advisory Board (M.240/2019)
• Charles Dawley (CD) 1 male mouse
• 15 mins pretest 24 hours before
• i.c.v.: administration 30 mins before behavior sampling
• i.p.: administration 30 mins before behavior sampling
• Open field (OF) test
• one-way ANOVA

Results

<table>
<thead>
<tr>
<th>Antidepressant-like effects</th>
<th>i.c.v.</th>
<th>i.p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KYNA</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>SZR72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SZR81</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>SZR104</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

References

Funding

The Economic Development and Innovation Operational Programme (GINOP)
GINOP 2.3.2-15-2016-00034
GINOP 2.3.2-15-2016-00048
TUDFO/4738/1-2019-ITM

www.PosterPresentations.com