Molecular identification of mealybug species (Hemiptera: Pseudococcidae) affecting *Theobroma* cacao for improved pest management

Alina Puig 1,*

Sarah Wurzel¹

Stephanie Suarez²

Jerome Niogret ³

Jean-Phillipe Marelli ⁴

- ¹ Subtropical Horticultural Research Station, USDA-ARS, Miami FL 33158 USA
- ² Mars Inc., 13601 Old Cutler Road, Miami FL 33158 USA
- ³ Mars Inc., James Cook University, Smithfield QLD 4878 Australia
- ⁴ Mars Plant Sciences Laboratory, Davis CA 95616 USA
- * Correspondence: alina.puig@usda.gov

Economic impact of mealybugs on crops

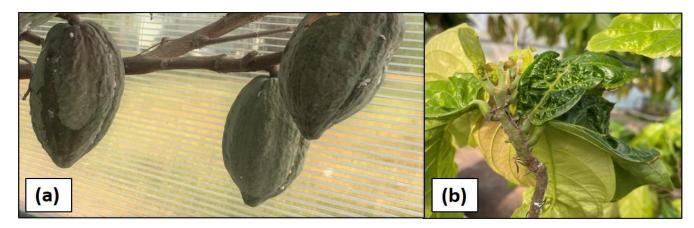
- Mealybugs (Hemiptera: Pseudococcidae) feed on sap and reduce plant vigor
- On cacao, their primary economic significance of is the ability to transmit viruses
- Most virus affecting cacao belong to the *Badnavirus* genus and are transmitted by mealybugs

Cacao swollen shoot virus (CSSV)

Location: West Africa

Cacao mild mosaic virus (CaMMV)

Location: The Americas



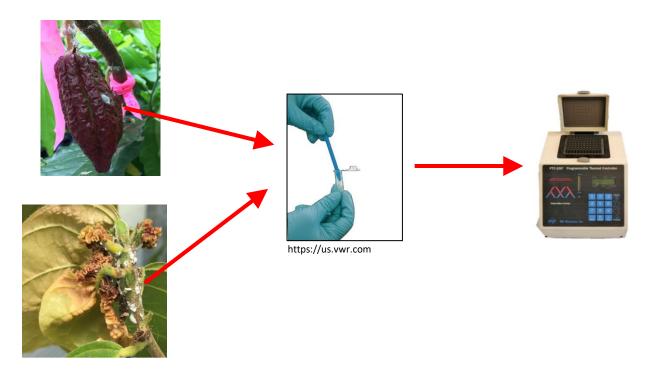
Species identification for effective control

- Effective management depends on accurate identification of species present
- Even closely related species have distinct life cycles and are vulnerable to different biological control organisms
- For example: a study on the parasitoid *Anagyrus sinope* found it could only parasitize one of the five *Pseudococcus* species tested (Chong & Oetting 2007)

- (a) Mealybugs and eggs on pods
- (b) leaf distortion characteristic of feeding by Maconellicoccus hirsutus.

Rationale

- Due to the high diversity of Pseudococcidae, each region has different species composition
- Morphological differentiation is challenging for non-specialists
- Sequence-based identification reduces the reliance on delicate morphological features



Methods: DNA extraction

- Mealybugs collected from cacao trees in Miami, FL
- DNA extracted from individual specimens

Methods: Markers and primers

Gene	Primers	Sequence (5'-3')	Amplicon Size	Reference
COI	MFCOI MRCOI	ATATCTCAAATTATAAATCAAGAA ATTACACCTATAGATAAAACATAATG	379 bp	Wetten et al. 2016
ITS2	ITS2-M-F ITS2-M-R	CTCGTGACCAAAGAGTCCTG TGCTTAAGTTCAGCGGGTAG	~800 bp	Malausa et al. 2011
28S	D10F D10R	GTAGCCAAATGCCTCGTCA CACAATGATAGGAAGAGCC	738-767 bp	Dietrich et al. 2001
28S	D2F D2R	AGAGAGAGTTCAAGAGTACGTG TTGGTCCGTGTTTCAAGACGGG	310-356 bp	Belshaw & Quicke 1997; Malausa et al. 2011

Results

- BLASTn results for COI, ITS2, 28S (D10F/D10R) sequences
- Species were determined based on matches obtained with COI sequences
- Red font denotes incorrect organisms among top matches

	Marker	Seq. Length	Genbank match	Accession No.	% Ident.	% Coverage
Pseudococcus	COI	371 bp	P. comstocki	LC121496.1	98.9	100
comstocki	ITS2	643 bp	P. comstocki	KU499509.1	96.3	100
	28S	840 bp	P. comstocki	JF965413.1	99.8	98
Pseudococcus	COI	370 bp	P. jackbeardsleyi	KJ187489.1	99.5	100
jackbeardsleyi	ITS2	679 bp	Pseudococcus viburni	KF819654.1	79.2	90
	28S	801 bp	Pseudococcus viburni	AY427376.1	99.1	99
		-	Oracella acuta	JF965418.1	98.9	99
			P. jackbeardsleyi	EU188510.1	99.9	95
Maconellicoccus	COI	374 bp	M. hirsutus	MK090645.1	100	100
hirsutus	ITS2	755 bp	M. hirsutus	KU883603.1	99.5	98
	28S	808 bp	M. hirsutus	AY427403.1	99.5	96

Parasitoid sequences obtained with primers D2F/D2R

- Encyrtid parasitoid sequences were obtained from host DNA using D2F/D2R primers
- These primers are not recommended for mealybug identification

ID	Species	Host	Origin	Collected	GenBank #
MB5	Anagyrus sp.	Pseudococcus jackbeardsleyi	USA	Jan-2021	MZ265304
MB7	Anagyrus sp.	P. jackbeardsleyi	USA	Jan-2021	MZ265305
MB8	Anagyrus sp.	P. comstocki	USA	Jan-2021	MZ265306
MB16	Anagyrus kamali	Maconellicoccus hirsutus	USA	Jan-2021	MZ265307

Conclusion

- Accurate identification of species present is essential for the selection of biological control organisms
- Routine use requires high-quality reference libraries against which sequences can be compared
- Markers **COI** and **ITS2** are recommended for mealybug identification
- The species detected here are widespread and polyphagous, thus the tools are useful for multiple crops and locations
- These protocols can be used by agricultural inspectors and scientists to identify mealybug specimens and study pest populations

In this study, ITS2 was not informative for P. jackbeardsleyi, due to the absence of reference sequences in GenBank. However, the sequences from this study were deposited in GenBank, making this marker valuable for future research.

Thank you

- Belshaw, R.; Quicke, D.L. A molecular phylogeny of the Aphidiinae (Hymenoptera: Braconidae). Molecular phylogenetics and evolution 1997, 7, 281-293.
- Chong, J.-H.; Oetting, R.D. Specificity of Anagyrus sp. nov. nr. sinope and Leptomastix dactylopii for six mealybug species. *BioControl* **2007**, *52*, 289-308.
- Dietrich, C.; Rakitov, R.; Holmes, J.; Black IV, W. Phylogeny of the major lineages of Membracoidea (Insecta: Hemiptera: Cicadomorpha) based on 28S rDNA sequences. Molecular phylogenetics and evolution 2001, 18, 293-305.
- Malausa, T.; Fenis, A.; Warot, S.; Germain, J.F.; Ris, N.; Prado, E.; Botton, M.; Vanlerberghe-Masutti, F.; Sforza, R.; Cruaud, C. DNA markers to disentangle complexes of cryptic taxa in mealybugs (Hemiptera: Pseudococcidae). Journal of applied Entomology 2011, 135, 142-155.
- Wetten, A.; Campbell, C.; Allainguillaume, J. High-resolution melt and morphological analyses of mealybugs (Hemiptera: Pseudococcidae) from cacao: tools for the control of Cacao swollen shoot virus spread. Pest management science 2016, 72, 527-533.