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Abstract: Tephritid fruit flies (Diptera:Tephritidae) are the major economically important agricultural
pests around the world. Numerous control measures are undergoing to reduce their abundance.
An efficient pest identification system is a prerequisite for such tasks. Typically, the classification/
identification of different insect species is done based on either external body features or DNA
barcoding. However, those approaches are time-consuming by nature, requiring expert knowledge
in relevant fields. Several machine learning (ML) models have been successfully deployed in the
field of systematics, but there is a lack of ML models for fruit fly species. This study aims to curate
and validate a comprehensive tephritid image database and build ML models to automatically
identify tephritids from mixed of tephritids and non-Tephritid dipteran flies, and classify four major
genera of notorious tephritid flies, namely, Anastrepha, Ceratitis, Rhagoletis, and Bactrocera. The
images of our experiment were collected from the iNaturalist database. The dataset is cleaned by
removing uninformative images using a deep learning model (Inception-V3) and unsupervised
k-mean clustering. Several state-of-the-art ML models are tested on the dataset, results in highest
accuracy of 95.44% with EfficientNet-B0 model to identify tephritid flies. Moreover, the EfficientNet-
B2 model achieved 89.65% accuracy for classifying representatives of the major tephritid genus and
showed the potential to enhance the identification accuracy. Overall, this work of the systematics
of harmful fruit flies can be transformed into a practical and effective detection tool and can be
implemented easily with existing agricultural pest control systems.

Keywords: Tephritid fruit fly; Machine Learning; Artificial Intelligence; Insect systematics

1. Introduction

Fruit flies (Family:Tephritidae) are one of the most destructive agricultural pests
around the world. Until 2018, over 4,000 species have been identified under this family
and 350 among them has been considered as economically harmful[1]. Australia is one of
the largest agricultural crop producers around the world and due to strong invasiveness
of fruitflies, Australia is under threats of numerous invasive fruit flies. Till date, more
than 300 fruitfly species have been recorded in Australia, within these several species of
Bactrocera and Ceratitis genera are the most prominent, causing millions of dollar losses
yearly [2,3]. For a sustainable development of agriculture, it is important to reduce the
prevalence of fruitfly species, and several environmental friendly, benign biological control
measures is being implemented, namely Sterile insect techniques (SIT)[4], Male Annilation
Technique (MAT)[5], Integrated Pest Management (IPM)[6] etc. Systematics of fruitlfies is
the steeping stone of such measures, which contribute to estimate pest species prevalance
within target area and suggest effective control measure to adopt[7].

Traditionally, fruitfly systematics is done based on morphological and genotypic
features. Morphological identification need careful collection and storage procedures, fol-
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lowed by manually curation by expert taxonomists[1]. This procedure is time-consuming,
error-prone and often leads to miss-identification of closely related species[8,9]. Genetic
features showed potential to be used as a rapid and accurate identification tool for fruitfly
systematics [10]. This process utilise a short section of DNA from a specific gene, especially
cytochrome c oxidase I (COI or COX1), 16S rRNA or 18S rRNA genes, which serve as an
unique "barcode" for the species[11]. Compared to morphological key based systematics,
DNA barcoding is automatic, can resolve species complexities and can be exercised with
low-amount of DNA. But DNA barcoding is often costly, need sophisticated instruments
and molecular biology expertise for sample preparation. Using cost-efficient Machine
learning (ML) models can overcome these disadvantages easily[12].

Several image-based ML models had been adopted in the field of insect systematics[13,
14]. Support vector machine (SVM) get better accuracy then traditional neural networks
(NNs) for order level classification and substantial improvements in other feature extraction
models further enhance the accuracy nearly 20% for a dataset comprising 24 insect classes
[15,16]. However, NN and SVM along with other traditional ML algorithms (e.g. KNN and
Naive Bayes) heavily rely on the quality of images and extracted features. Real-life images
with complex backgrounds often create inevitable noises in the dataset, which resulted
in poor efficacy in classifying insects [17]. Moreover, the dataset need heavily manual
curation to standardise images. Principal component analysis (PCA) and scale-invariant
feature transform (SIFT) performed well to some extent [15,18]. In contrast, advanced
neural networks such as convolutional neural networks (CNN) has better tolerance for
different systematics tasks[19,20]. It focus on the whole images rather than only on pre-
defined low-level features and able to train with more deeper and fine-tune body features.
While comparing with other ML models, multi-layerd CNN model outperformed others to
classify insect classes [21]. Numerous convolution models had been proposed to classify
lepidopteran insects, but most of them utilised simple, unified images to build the database
[22–24]. Recently, computer-intensive deep convolutional neural network (DCNN) models
showed outstanding performance for complexed background insect images and showed
high potential to be used in insect pest systematics [20,25,26]. Even though numerous ML
models have been developed in insect systematics, there is a scarcity of ML model for
fruitflies and possible implementation in biological control measures. There is also huge
gap for proper and large sized dataset to train the models effectively.

The aim of this study is to curate a comprehensive fruitfly image database from
publicly available data-sources and develop a ML model to be used in the field of fruitfly
systematics. The model will distinguish the major economically important agricultural
pests, tephritids, from mixed of tephritids and non-tephritid dipteran flies and will classify
among four genera of fruitflies. Based on the risk analysis of 180 economically important
Tephritids in six countries (China, USA, South Africa, Argentina, Italy, and Australia)[27],
we selected four most destructive genera namely, Anastrepha, Ceratitis, Rhagoletis, and
Bactrocera. Images were collected from iNaturalist 1 and pre-processed with an Inception-
V3 model and unsupervised k-mean clustering to remove uninformative and irrelevant
images. We validated our dataset with three traditional ML classifiers, KNN, Naive Bayes
and SVM, along with some state-of-the-art DCNN models including ResNets, EfficientNets,
and ResNeSts. Our model can distinguish fruitflies from non-fruitfly dipteran fly, and
further classify fruitflies into one of the four major genera. The implication of current
study can be used on insect pest monitoring and servillance, as well as can be adopted for
species-level classification works.

2. Materials and Methods:

The experimental design of the current study is to collect image datasets from publicly
available data-repositories, build an automated method to extract general features of insects

1 https://www.inaturalist.org
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Table 1. Details of insect images: (a) FF2 and (b) TF4 databases

(a) FF2 dataset

Insect class Pre-cleaning Post-cleaning

Non-Tephritid flies 83,941 45,103
Tephritid fruitflies 5,649 5,287

(b) TF4 dataset

Insect class Pre-cleaning Post-cleaning

Anastrepha 674 671
Ceratitis 1,463 747

Rhagoletis 1,030 948
Bactrocera 1,061 1,043

with complex backgrounds, and finally apply ML including DCNN models to classify
tephritids.
Data collection: For insect images collection, we used the iNaturalist website, which is
frequently used by citizen scientists and biologists to share observations of biodiversity
across the world and contain 92.30% to 97.30% proper classification of biological entities
[28]. Our first dataset, namely "FF2", includes all images of dipteran fruitflies available
at the website and further divided into two major groups - tephritids and non-tephritid
dipteran flies. We used "diptera" search term and downloaded 89,247 images using in-
house python script. The search term "tephritidae" was used to download images of
"tephritids", whereas non-tephritid dataset was build by subtracting tephritid images from
the diptera dataset. In total, we downloaded 89,247 images for FF2 dataset, containing
5,306 and 83,941 Tephritidae and non-Tephritid dipteran flies, respectively. Our second
dataset, namely "TF4", contains images of four major genera of tephritid fruitflies, namely
Anastrepha, Ceratitis, Rhagoletis, and Bactrocera. We used respected genus names as search
terms, and found 674, 1463, 1030 and 1061 images for Anastrepha, Ceratitis, Rhagoletis, and
Bactrocera, respectively. After downloading the images, our TF4 dataset contains 4228
images in total and divided under respected genera names.
Data pre-processing: Due to some poor-quality, uninformative images and large scale of
the dataset, it is essential to develop an automatic method to detect and remove irrele-
vant images. The automatic pre-processing method follows several steps: 1) Pre-trained
Inception-V3 model was used to get a 2,048 dimensional feature vector and a 1000 dimen-
sional score vector corresponding to ImageNet classes, with reduced size of 299×299. 2)
Principal component analysis (PCA) and a non-linear t-Distributed stochastic neighbor
embedding (t-SNE)[29] were applied to reduce feature dimensions from 2,048. 3) k-means
clustering was considered to group similar images in a single cluster. Elbow curve (see
Figure 1(a)) was used to determine the value of k, which is 20 as the Within-Cluster-Sum-
of-Squared Errors (WCSS) became very steady after the value. The 2d visualization of
the cluster is shown in Figure 1(b). 4) It was found that flies are identified in 14 classes
(range 303 to 320 excluding 306, 311, 312, 315) among the 1,000 ImageNet classes, we call
the range as ’flies range’. Samples probability scores are shown in Figures 1(c) and 1(d). If
highest peak was not found in the ’flies ranges’ and sample score in the ’flies ranges’ was
<0.15 in any clusters, they were excluded. Images were also removed from other clusters
if sample score in the ’flies ranges’ was <0.15. Other images on the other clusters were used
for further analysis.

Since we used a fixed Inception-V3 model pre-trained on ImageNet to quickly scan
our databases, the extracted features do not describe the images very accurately. Inevitably,
we lose a certain amount of images using this automated process. To quantify our loss,
we randomly selected 100 samples from deleted photos and manually examined them to
calculate the loss rate. The average loss rate ranges from 17% to 23%. We employ this
automatic cleaning method mainly on the class non-tephritid dipteran flies from FF2 and
Ceratitis from TF4, which turned out to include many irrelevant images of other species.
For other classes with few uninformative images, k-mean clustering and simple manual
check on few clusters were conducted to filter images. Detailed information about the pre-
and post-cleaned FF2 and TF4 databases are presented in Table 1.
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Figure 1. Automated Data Cleansing Methods, where (a) The Elbow Method Graph, (b) 2D Plot of T-SNE on PCA50, (c)
Mean Probability Distribution of Kept Cluster, (d) Mean Probability Distribution of Removed Cluster

Classification models: We employed transfer learning (TL) with pre-trained models on our
databases instead of training entire DCNN models from scratch (with random initialization).
PyTorch provides different DCNN pre-trained models trained on sufficient data from
ImageNet, including 1.2 million images from 1000 categories [30]. TL maximizes the
performance of DCNN models on our image datasets and ensures fast convergence. Before
training, all images need to be rescaled to a uniform size based on the input requirements
of different DCNN models and then normalized by calculating the Z-score with the mean
[0.485, 0.456, 0.406] and standard deviation [0.229, 0.224, 0.225] of three color channels
computed on the ImageNet. Our experiments included the two major applications of TL.
One is utilizing the pre-trained network as a fixed feature extractor. Without training to
update weights, the base convolutional network can already learn meaningful features
quickly. Using extracted feature maps, classification models like SVM, KNN, and NB were
trained to classify the target fruit-fly classes. The second way to apply TL is by fine-tuning
the pre-trained models. We started at the trained weights but modified the structure of a
few top layers and unfroze some layers for retraining, which could train classifiers more
relevant to our dataset conditions. Finally, we adapted ResNet, ResNeSt, and EfficientNet
series to compare their performance.

3. Results

Experimental setup: We conduct stratified 10-fold cross-validation. For each fold, 80% of
data are used for training, 10% for validation, and the rest for testing. We compute the
loss and accuracy of the training and validation set after each epoch during training. The
best weights are updated if a higher accuracy appeared on the validation set. Models are
evaluated on the testing set after training each fold.
Evaluation: We return a confusion matrix after predicting the testing set and then compute
accuracy (ACC), Precision (PPV), Recall (TPR), and F1-score as the measures. Since FF2 has
an imbalanced problem, we take the weights of class into account and employ weighted
measures. The results are listed in Table 2 which reflect the average performance of
cross-validation.
Implementation details: For traditional ML classifiers, we decided to extract features by
the ResNet152 model. The average pooling layer of ResNet152 was selected as the end
layer, returning a vector of 2,048 features for each image. After processing all images in
the dataset, a large feature map with the dimension of 2,048 are prepared for running
different ML classifiers. In nonlinear classification, Radial Basis Function (RBF) often
performs the best among all kernel functions [31]. Therefore, we trained our SVM with the
RBF kernel: exp(−γ‖x− x′‖2), where, γ determines the effect of a single training input.
Another important parameter in defining RBF is ’c’, which determines the smoothness
of the decision surface. We used grid-search in LibSVM and cross-validation to find the
optimal ’c’ and ’gamma’ values on the training set before SVM prediction. In KNN, the
number of neighbor observations is set to be four based on computing euclidean distance.
The likelihood of the features given a class was assigned to be Gaussian for NB classifiers.
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Table 2. Performance comparison among the models on (a) FF2 and (b) TF4 datasets

(a) FF2 dataset

Model ACC PPV TPR F1-score

ResNet+Complement NB 68 68 88 74
ResNet+SVM with RBF 76 76 89 80

ResNet+KNN4 90 90 86 85
ResNet50 89.97 90.70 98.96 94.64

ResNeSt50 93.46 92.29 90.85 91.52
EfficientNet-B0 95.44 96.73 98.22 97.47

(b) TF4 dataset

Model ACC PPV TPR F1-score

ResNet+KNN4 42 44 42 43
ResNet+Gaussian NB 52 53 52 52

ResNet+SVM with RBF 62 63 62 62
ResNet50 75.60 75.84 75.60 75.57

ResNeSt50 85.45 85.68 85.45 85.45
EfficientNet-B0 87.57 87.69 87.57 87.56
EfficientNet-B2 89.65 89.71 89.65 89.64

For DCNN based image classification, we tuned the parameters according to the
following rules: (1) We reset the size of the final fully connected layer to satisfy the actual
number of target classes in our datasets that are 2 for FF2 and 4 for TF4; (2) We unfreeze
the weights of all layers to be retrained; (3) Adam optimizer is adapted with a batch size of
32; (4) The default loss function is cross-entropy; (5) We set the learning rate to start at 10−3

and decrease to a tenth after every seven epochs with a scheduler; (6) Models are trained
15 epochs in a fold on FF2 and 50 epochs on TF4 to guarantee convergence.

FF2 is an imbalanced dataset containing 5,287 Tephritids and nearly 8.5 times lower
than 45,103 non-Tephritid dipteran flies. We improved some of the default methods to
solve this problem: (1) SVM was implemented with assigned class weights [1, 8.5] to tell
the model paying more attention to the category with fewer images. (2) we applied the
complement Naive Bayes instead of Gaussian NB, which is particularly strong in dealing
with imbalanced data[32].
Hardware setup: The experiments are conducted on a 2.6 GHz Intel Core i7-10750H CPU
with 16 GB of RAM and an NVIDIA GeForce RTX 2070 GPU with 16 GB of memory. The
work was implemented in Jupyter Notebook, Python, and other supporting libraries such
as Sklearn and Pytorch.
Classification performance: As we see from Table 2, EfficientNet-B0 surpassed all other
models with the highest ACC (95.44%), PPV (96.73%), and F1-score (97.47%) where Com-
plement NB performed the worst on FF2. ResNet50 got a high TPR (98.96%). The confusion
matrix in Figure 2(a) presents the prediction result of the optimal EfficientNet-B0 model on
one testing set. 8 of the 4,511 non-tephritids were miss-classified as tephritids and 19 of the
528 tephritids were miss-classified as non-tephritids. For TF4, EfficientNet-B2 turned out to
be the best with over 89.00% values in all measures as shown in Table 2(b). ResNet+KNN4
obtained lower than 50% accuracy in identifying the genus of fruit fly pests. Similarly, the
prediction result of the optimal EfficientNet-B2 model is presented in Figure 2(b). 80.60% of
Anastrepha, 88.46% of Bactrocera, 94.67% of Ceratitis, and 88.42% of Rhagoletis were correctly
classified.

Figure 2. Confusion matrix for (a) EfficientNet-B0 on FF2, (b) EfficientNet-B2 on TF4 datasets.
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4. Discussion

Our study aims to build a large dataset of fruit fly images with complex ecological
backgrounds to routinely identify economically important tephritid fruit flies and its major
genera. We collected images from online open source, built an automated approach to
pre-process images and finally evaluated the dataset using traditional ML and DCNN
based systems - to distinguish between tephritids and non-tephritid dipteran flies, and
among four most destructive fruit flies. The step-by-step improvement in the prediction
accuracy illustrated the high quality of our dataset, which can be widely employed by
other researchers to evaluate the optimization of models in tephritids identification.

We evaluated our model, on both FF2 and TF4 datasets. For FF2 dataset, compared
to other models EfficientNet-B0 achieves the highest testing accuracy of 95.44%. ResNet
with traditional classifiers (NB, SVM and KNN4) results in poor accuracy, since they treat
all features independently and weights equally. Compared to ResNet50, the improved
ResNeSt50 model with more attention on target area, results in 3.5% increase in accuracy.
As the number of the tephritid images are 8.5 times lower than the non-tephritid flies,
the identification of later provide accuracy with less miss-classified instances as shown
in Figure 2. Since TF4 dataset is much smaller than FF2 dataset in size, we were able to
scale up EfficientNets to EfficientNet-B2 and the later obtained the highest accuracy of
89.65% in distinguishing among Anastrepha, Bactrocera, Ceratitis, and Rhagoletis fruitflies.
Like previous, traditional ML techniques do not perform well with ResNet extracted deep
features. The optimal SVM only achieve nearly 60% accuracy where KNN and NB are even
close to a random classifier. In contrast, DCNN models show outstanding improvements
with at least 75% prediction accuracy based on a ResNet50 model. ResNeSt50 further
improve the accuracy to 85.45%. Among the four genera Ceratitis and Anastrepha show
highest and lowest accuracy of 94.67% and 80% (please see Figure 2(b)). The reason might
be due to unique morphological characteristics of Ceratitis than other three genera or
discrepancy in the number of images.

In comparison, Kasinathan et al.[21] utilised traditional ML models, with NB, SVM,
KNN, and CNN classifiers to annotate few agricultural insect orders and families, and with
optimal CNN classifier, their model achieved approximately 90% accuracy. Deng et al. [23]
conducted a linear SVM on invariant features extracted by ROI and achieved accuracy of
85.5% to classify orders of tea plant insects. The classification between genus or species is
challenging than distinguishing insects orders due to higher similarities in morphological
appearances. CNN model of Hansen et al.[33] got 74.9% accuracy to predict ground
beetles species. Motta et al.[34] implemented CNN models including LeNet, AlexNet and
GoogleNet to classify three mosquito species and achieved highest of 76.2% accuracy. It
is notable that, all of these studies considered small, heavily curated insect images and
most importantly does not contain any representatives of dipteran fruitflies. We found few
studies, related to ours. Martins et al.[19] tested several CNN models on field collected
images and got nearly 92% in identifying C. capitata and Grapholita Molesta, which are
visually distinguishable and belongs to different insect orders. Recently, CNN and DCNN
models showed potential for species-level classifications of Bactrocera and Anastrapha, with
accuracy ranging from 92.04% for complex background images to 95.68% for noise-free
images [20,26]. The collected images of our study are shared by different people worldwide
and the shooting environment, the size of the fruit fly target, and the lighting conditions
varies widely which is much more complicated than collecting at a specific field and time
for most researches. Under such heavy challenge, we still achieved 89.65% and 95.44%
prediction accuracies on TF4 and FF2 datasets using EfficientNet-B2 and EfficientNet-B0
models respectively, and our model showed potential to enhance the accuracy further.

In summary, our model outperformed most of the studies to distinguish between
tephritids and non-tephritids, and among the four tephritid genera. There is still much
scope to enhance the accuracy by fine-tuning some parameters and enhancing computing
resources or number of representative images. Models with larger scales in the EfficientNet
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series and ResNeSt series are expected to provide better classification results in future
study.

5. Conclusions

There are numerous biological control programs undergoing worldwide to control
tephritid fruitflies [35,36] and our study can improvise such programs by identifying
prevalent pest species of a particular area, before applying specific control measure. The
outcome of current study is not only the model, but also the comprehensive dataset, which
can be utilised in pest dynamics studies of a target area. Our model can be adopted easily
for species-level classification of tephritid fruitflies as well as for other dipteran flies. It will
be helpful to determine non-targeted insects, which cause benefits to crops and maintain
ecological balance in the environment, but often overlooked in other control measures. In
return, the possibility of exotic pest incursion can be decreased, the economically dangerous
fruit flies can be quickly detected and better monitored. For field level implementation,
low-cost application based tool can be built easily using the dataset and pre-trained model.

Data Availability Statement: All images were collected from iNaturalist website, accessed at
[24/03/2021]. The code and raw images are publicly available here: [https://github.com/Dukeshen1
/Tephritid-Recognition].
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Canberra, Australia. It has also been supported by Machine Learning & Artificial Intelli-
gence Future Science Platforms, CSIRO, black mountain, Canberra, Australia. the authors
would like to thank Yan Yang [https://orcid.org/0000-0002-6246-1748] for his constructive
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References
1. Health, P. The Australian Handbook for the Identification of Fruit Flies Version 3.1; planthealthaustralia, 2018.
2. Sutherst, R.W.; Collyer, B.S.; Yonow, T. The vulnerability of Australian horticulture to the Queensland fruit fly, Bactrocera (Dacus)

tryoni, under climate change. Australian Journal of Agricultural Research 2000, 51, 467–480.
3. Sciarretta, A.; Tabilio, M.R.; Lampazzi, E.; Ceccaroli, C.; Colacci, M.; Trematerra, P. Analysis of the Mediterranean fruit fly

[Ceratitis capitata (Wiedemann)] spatio-temporal distribution in relation to sex and female mating status for precision IPM. PloS
one 2018, 13, e0195097.

4. Kubi, C.; Van Den Abbeele, J.; de Keken, R.; Marcotty, T.; Dorny, P.; van den Bossche, P.; van den Bossche, P.; Akoda, K.; Djagmah,
B.; De Deken, R.; others. CRP: Improved and Harmonized Quality Control for Expanded Tsetse Production, Sterilization and
Field Application. Evolutionary Biology, 22, 1516–1525.

5. Christenson, L. The male annihilation technique in the control of fruit flies; ACS Publications, 1963.
6. Elliott, N.; Farrell, J.; Gutierrez, A.; van Lenteren, J.C.; Walton, M.; Wratten, S. Integrated pest management; Springer Science &

Business Media, 1995.
7. Kapoor, V. Taxonomy and biology of economically important fruit flies of India. Israel Journal of Entomology 2005, 35, 459–475.
8. Freidberg, A. CABIKEY to the Indo-Australian Dacini fruit flies (CD-ROM). By IM White & DL Hancock (Wallingford, CAB

International, 1997). Bulletin of Entomological Research 1999, 89, 109–109.
9. Virgilio, M.; White, I.; De Meyer, M. A set of multi-entry identification keys to African frugivorous flies (Diptera, Tephritidae).

ZooKeys 2014, p. 97.
10. Armstrong, K.; Ball, S. DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society

B: Biological Sciences 2005, 360, 1813–1823.
11. Hebert, P.D.; Cywinska, A.; Ball, S.L.; Dewaard, J.R. Biological identifications through DNA barcodes. Proceedings of the Royal

Society of London. Series B: Biological Sciences 2003, 270, 313–321.
12. Wang, J.; Chen, Y.; Hou, X.; Wang, Y.; Zhou, L.; Chen, X. An intelligent identification system combining image and DNA sequence

methods for fruit flies with economic importance (Diptera: Tephritidae). Pest Management Science 2021.
13. Yang, H.P.; Ma, C.S.; Wen, H.; Zhan, Q.B.; Wang, X.L. A tool for developing an automatic insect identification system based on

wing outlines. Scientific reports 2015, 5, 1–11.
14. Favret, C.; Sieracki, J.M. Machine vision automated species identification scaled towards production levels. Systematic Entomology

2016, 41, 133–143.
15. Wang, J.; Lin, C.; Ji, L.; Liang, A. A new automatic identification system of insect images at the order level. Knowledge-Based

Systems 2012, 33, 102–110.
16. Xie, C.; Zhang, J.; Li, R.; Li, J.; Hong, P.; Xia, J.; Chen, P. Automatic classification for field crop insects via multiple-task sparse

representation and multiple-kernel learning. Computers and Electronics in Agriculture 2015, 119, 123–132.

https://github.com/Dukeshen1/Tephritid-Recognition
https://github.com/Dukeshen1/Tephritid-Recognition
https://orcid.org/0000-0002-6246-1748


Proceedings 2021, 68, 0 8 of 8

17. Xia, D.; Chen, P.; Wang, B.; Zhang, J.; Xie, C. Insect detection and classification based on an improved convolutional neural
network. Sensors 2018, 18, 4169.

18. Lowe, D.G. Distinctive image features from scale-invariant keypoints. International journal of computer vision 2004, 60, 91–110.
19. Martins, V.A.; Freitas, L.C.; de Aguiar, M.S.; de Brisolara, L.B.; Ferreira, P.R. Deep Learning applied to the Identification of Fruit

Fly in Intelligent Traps. 2019 IX Brazilian Symposium on Computing Systems Engineering (SBESC). IEEE, 2019, pp. 1–8.
20. Peng, Y.; Liao, M.; Deng, H.; Ao, L.; Song, Y.; Huang, W.; Hua, J. CNN–SVM: a classification method for fruit fly image with the

complex background. IET Cyber-Physical Systems: Theory & Applications 2020, 5, 181–185.
21. Kasinathan, T.; Singaraju, D.; Uyyala, S.R. Insect classification and detection in field crops using modern machine learning

techniques. Information Processing in Agriculture 2020.
22. Ding, W.; Taylor, G. Automatic moth detection from trap images for pest management. Computers and Electronics in Agriculture

2016, 123, 17–28.
23. Deng, L.; Wang, Y.; Han, Z.; Yu, R. Research on insect pest image detection and recognition based on bio-inspired methods.

Biosystems Engineering 2018, 169, 139–148.
24. Zhu, L.Q.; Ma, M.Y.; Zhang, Z.; Zhang, P.Y.; Wu, W.; Wang, D.D.; Zhang, D.X.; Wang, X.; Wang, H.Y. Hybrid deep learning for

automated lepidopteran insect image classification. Oriental Insects 2017, 51, 79–91.
25. Cheng, X.; Zhang, Y.; Chen, Y.; Wu, Y.; Yue, Y. Pest identification via deep residual learning in complex background. Computers

and Electronics in Agriculture 2017, 141, 351–356.
26. Leonardo, M.M.; Carvalho, T.J.; Rezende, E.; Zucchi, R.; Faria, F.A. Deep feature-based classifiers for fruit fly identification

(diptera: Tephritidae). 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE, 2018, pp. 41–47.
27. Qin, Y.; Paini, D.R.; Wang, C.; Fang, Y.; Li, Z. Global establishment risk of economically important fruit fly species (Tephritidae).

PLoS One 2015, 10, e0116424.
28. Unger, S.; Rollins, M.; Tietz, A.; Dumais, H. iNaturalist as an engaging tool for identifying organisms in outdoor activities. Journal

of Biological Education 2020, pp. 1–11.
29. Linderman, G.C.; Steinerberger, S. Clustering with t-SNE, provably. SIAM Journal on Mathematics of Data Science 2019, 1, 313–332.
30. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. 2009 IEEE conference

on computer vision and pattern recognition. Ieee, 2009, pp. 248–255.
31. Divya, B.; Santhi, M. SVM-based Pest Classification in Agriculture Field. International Journal of Recent Technology and Engineering

(IJRTE) 2019, 7, 2277–3878.
32. Rennie, J.D.; Shih, L.; Teevan, J.; Karger, D.R. Tackling the poor assumptions of naive bayes text classifiers. Proceedings of the

20th international conference on machine learning (ICML-03), 2003, pp. 616–623.
33. Hansen, O.L.; Svenning, J.C.; Olsen, K.; Dupont, S.; Garner, B.H.; Iosifidis, A.; Price, B.W.; Høye, T.T. Species-level image

classification with convolutional neural network enables insect identification from habitus images. Ecology and evolution 2020,
10, 737–747.

34. Motta, D.; Santos, A.Á.B.; Winkler, I.; Machado, B.A.S.; Pereira, D.A.D.I.; Cavalcanti, A.M.; Fonseca, E.O.L.; Kirchner, F.; Badaró,
R. Application of convolutional neural networks for classification of adult mosquitoes in the field. PloS one 2019, 14, e0210829.

35. Yosiaki, I.; Kakinohana, H.; Yamagishi, M.; Kohama, T. Eradication of the melon fly, Bactrocera cucurbitae, from Okinawa, Japan,
by means of the sterile insect technique, with special emphasis on the role of basic studies. Journal of Asia-Pacific Entomology 2003,
6, 119–129.

36. Estes, A.; Nestel, D.; Belcari, A.; Jessup, A.; Rempoulakis, P.; Economopoulos, A. A basis for the renewal of sterile insect technique
for the olive fly, Bactrocera oleae (Rossi). Journal of Applied Entomology 2012, 136, 1–16.


	Introduction
	Materials and Methods:
	Results
	Discussion
	Conclusions
	References

