

Nanostructured bismuth SPCEs for nonenzymatic paracetamol sensing: development, testing, and computational approach

Mallikarjun Madagalam, Federica Catania, Mattia Bartoli,

Sandro Carrara, Alberto Tagliaferro

Freie Universität Bozen

Libera Università di Bolzano

FREE UNIVERSITY OF BOZEN · BOLZANO

1.Paracetamol and bismuth sensors: a brief introduction

2.Bismuth sub-nitrate sinthesis

3.Electrochemical studies

4.Computational studies

5.Conclusions

1. Paracetamol sensing: a brief introduction

- Paracetamol is one of the most studied emerging pollutants.
- Paracetamol detection could be performed in several ways ranging from chromatographic methods to electrochemical ones.
- Electrochemical approaches represent a solid choice of all available systems.

Why should choose an electrochemical sensor over other systems?

- ✓ High sensitivity
- ✓ Low limit of detection (LOD)
- ✓ Good precision and accuracy
- ✓ Fast and easy detection process

- Tasić, Žaklina Z., et al. "Review of applied surface modifications of pencil graphite electrodes for paracetamol sensing." Results in Physics 22 (2021): 103911.
- Chatterjee, Abhik. "Different Electrodes for Paracetamol Estimation using Cyclic Voltammetry Technique: A Review." *Research Journal of Pharmacology and Pharmacodynamics* 9.2 (2017): 88-92.

1. Paracetamol and bismuth sensors: a brief introduction

Bismuth based materials for electrosensing applications

- Bismuth is a non toxic metalloid produced as a side product of lead and from bismite.
- Bismuth could be converted in several different nitrates and subnitrates by simple solid phase reactions.
- Bismuthoxide and nitrates are quite stable under various conditions.
- Good electrochemical performances both as a sensor and in electrochemical storage.

Number of papers about the use of bismuth for biosensing

• Švancara, Ivan, et al. "A decade with bismuth-based electrodes in electroanalysis." *Electroanalysis* 22.13 (2010): 1405-1420.

2.Bismuth sub-nitrate sinthesis

CSAC2021: 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry

mattia.bartoli@iit.it

Liu, Gen-qing, et al. "Research on nonenzymatic electrochemical sensor using HO-BiONO3 nanocomposites for glucose detection." Sensors and Actuators B: Chemical 242 (2017): 484-491.

3.Electrochemical studies

 Peak current increased by decorating a bare SPCE with HO-BiONO_{3.} Peak current increased by increasing the amount of HO-BiONO₃ used for tailoring the electrode surface.

Working electrode	Peak position (mV)	Peak current (μA)
SPCE	459.9 ± 1.0	$\textbf{33.1} \pm \textbf{1.5}$
HO-BiONO ₃	433.6 ± 6.1	42.0 ± 1.5
PEG HO-	385 ± 30	52.1 ± 3.0
BiONO 3		

Cyclic voltammograms of 1mM Paracetamol in 0.1M PBS at pH 7 with bare (dotted lines) and HO-BiONO₃ (solid lines) sensors where 1,2 without analyte and 3,4 with paracetamol in buffer solution.

Different amounts of HO-BiONO₃ deposition on the surface of working electrode: from solution drops with volumes of 1) 50 μ L, 2) 25 μ L, 3) 10 μ L, and 4) 5 μ L.

Madagalam, Mallikarjun, et al. "Bismuth-Nanocomposites Modified SPCEs for Non-Enzymatic Electrochemical Sensors." IEEE Sensors Journal 21.9 (2021): 11155-11162.

3. Electrochemical studies

The HO-BiONO₃ electrochemical system is a freely diffusing quasi-reversible system.

Cyclic voltammograms of 1mM paracetamol in 0.1M PBS at pH 7 with the scan rate (50 mV/s, 100 mV/s, 150 mV/s, 200 mV/s, 250 mV/s, and 300 mV/s) for PEG-coated HO-BiONO₃ sensor.

Plots of E_{pa} and E_{pc} with ln(v) for PEG-coated HO-BiONO₃ sensor. Insets: plots of ΔE_p as a function of ln(v).

Madagalam, Mallikarjun, et al. "Bismuth-Nanocomposites Modified SPCEs for Non-Enzymatic Electrochemical Sensors." IEEE Sensors Journal 21.9 (2021): 11155-11162.

3. Electrochemical studies

Laviron approach

$$E_{pc} = E^{0} - \left(\frac{RT}{\alpha nF}\right) ln \left[\frac{\alpha}{|m|}\right] \quad \text{Cathodic potential}$$
$$E_{pa} = E^{0} + \left(\frac{RT}{(1-\alpha)nF}\right) ln \left[\frac{(1-\alpha)}{|m|}\right] \quad \text{Anodic potential}$$
$$lnk = \alpha ln(1-\alpha) + (1-\alpha)ln\alpha - ln \left(\frac{RT}{nF\nu}\right) - \alpha(1-\alpha)\frac{nF\Delta E_{p}}{RT}$$

Working electrode	α	ΔE _p (mV)	k (ms⁻¹)
SPCE	$0.44{\pm}0.10$	477±45	0.60±0.33
HO-BiONO ₃	0.45±0.04	392±19	2.20±0.82
PEG HO-BIONO ₃	0.40±0.04	243±10	42.0±9.8

- n is close to 2 supporting a 2 electron transfer process.
- Higher k for HO-BiONO₃ for tailored electrodes.

- Madagalam, Mallikarjun, et al. "Bismuth-Nanocomposites Modified SPCEs for Non-Enzymatic Electrochemical Sensors." IEEE Sensors Journal 21.9 (2021): 11155-11162.
- Laviron, E.. "General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 101.1 (1979): 19-28.

3. Electrochemical studies

Working electrode	Sensitivity (µA/mM)	Detection limit (μM)	R.S.D.
SPCE	20.0 ± 0.2	2.32 ± 0.03	1.2%
HO-BiONO ₃	34.9 ± 0.2	2.79 ± 0.01	0.48%
PEG HO-BiONO ₃	43.5 ± 0.5	2.24 ± 0.03	1.2%

- Increment of sensitivity with surface tailoring of bare SPCE.
- The use of PEG coated HO-BiONO₃ led to a further improvement of sensitivity.

Madagalam, Mallikarjun, et al. "Bismuth-Nanocomposites Modified SPCEs for Non-Enzymatic Electrochemical Sensors." IEEE Sensors Journal 21.9 (2021): 11155-11162.

Calibration curves obtained by taking the oxidation peak currents of CVs for bare SPCE (black), HO-BiONO₃ (red) and PEG HO-BiONO₃ (green) sensors.

 $[k] = [s^{-1}]$

How could it be possible evaluate the Electron transfer rate (k)?

Generalization of Marcus theory

$$k = \frac{2\pi}{\hbar} J^2 (4\pi k_B T \lambda)^{-\frac{1}{2}} e^{-\frac{(\Delta G + \Delta g_S^0)^2}{4k_B T \lambda}}$$

where the free energy variation ΔG is:

$$\Delta G = -\Delta V^* - \Delta g_s^o$$

and the reorganization energy is:

$$\lambda = \frac{e^2}{2} (\epsilon_{op}^{-1} - \epsilon_s^{-1}) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{R} \right)$$

- *E*^{solv}_{int} interaction energy between permanent dipole solvent
- *IP* ionization potential
- *EA* electron affinity
- Δg_s^e solvation energy of the ion pair due to solvent electronic polarization
- Δg_s^o solvation energy of the ion pair due to solvent orientational polarization
- e^2/R ion pair Coulomb interaction

- Tachiya, M. (1993). Generalization of the Marcus equation for the electron-transfer rate. *The Journal of Physical Chemistry*, 97(22), 5911-5916.
- Cave, Robert J., and Marshall D. Newton. "Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements." *Chemical physics letters* 249.1-2 (1996): 15-19.

- We modelled the oxidative pathway of paracetamol considering a simultaneous 2 electron transfer.
- We selected as representative species for HO-BiONO₃ a dimeric and a trimeric compounds
- We implemetented a simulation of transitional state using a mixed approach based on molecular mechanics (MM+ method) and a Hartree-Fock based semiempirical method (base PM3).

HO-BiONO₃ trimer

- We firstly evaluated **symmetric dimers** with two nitric or hydroxylic groups
- We added a several molecules of water. Here are reported the studies realized by using 5 water molecules.

- The asymmetric dimer showed a higher k
- Misalignment of paracetamol and Bi-Bi plane.

 $NO_3 - OH - NO_3$ k = 5.86 \cdot 10^{-2} s^{-1}

CSAC2021: 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry

- Computed k suggest that the area rich in hydroxylic functions are responsible for the electrochemical sensing according to experimental data
- Activation energy trend is not linear and is affected by both geometrical and chemical parameters

Dimer	$k[s^{-1}]$	Activation energy [<i>eV</i>]
NO ₃ -NO ₃	$1.2 \cdot 10^{-3}$	9.3
OH-OH	$2.6 \cdot 10^{-3}$	10.89
OH-NO ₃	$6.9 \cdot 10^{-3}$	7.74
NO ₃ -OH	$2.78 \cdot 10^{-2}$	7.46
Trimer	<i>k</i> [s ⁻¹]	Activation energy [eV]
Trimer NO ₃ -NO ₃ -NO ₃	$k[s^{-1}]$ 7.08 · 10 ⁻⁵	Activation energy [eV] 7.34
Trimer NO ₃ -NO ₃ -NO ₃ NO ₃ -OH-NO ₃	$\frac{k[s^{-1}]}{7.08 \cdot 10^{-5}}$ $5.9 \cdot 10^{-2}$	Activation energy [eV] 7.34 5.75
Trimer NO_3 - NO_3 - NO_3 NO_3 - OH - NO_3 NO_3 - OH - OH	$\frac{k[s^{-1}]}{7.08 \cdot 10^{-5}}$ $5.9 \cdot 10^{-2}$ $8.46 \cdot 10^{-2}$	Activation energy [eV] 7.34 5.75 9.16

- Sinthesis of different subnitrate specie by using an in solution approach
- Tailoring of bare SPCE with bismuth subnitrate species
- Observed an improvement in paracetamol detection by using tailored electrode
- Modelling the electron transfer process

