
Proceedings

Visible-Near Infrared Platelets Count: Towards Thrombocytosis
Point-of-Care Diagnosis

Barroso TG , Ribeiro L 1,2 , Gregório H 1 , Santos F 3 and Martins RC 2,*

Citation: Barroso, T.G.; Ribeiro, L.;

Gregório, H.; Santos, F.; Martins, RC

Title. Journal Not Specified 2021, 1, 0.

https://doi.org/

Received:

Accepted:

Published: 01 July 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: c© 2021 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CHV - Veterinary Hospital Center, R. Manuel Pinto de Azevedo 118, Porto-Portugal
2 Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa - Portugal
3 INESC TEC - Institute for Systems and Computer Engineering, Technology and Science - Campus da

FEUP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
* Correspondence: rmcm@inesctec.pt

Abstract: Thrombocytosis is a disorder with excessive number of platelets in the blood, being total1

platelet counts (TPC) crucial for diagnosis. This condition predisposes to blood vessels clotting2

and diseases such as stroke or heart attack. TPC is generally performed at the laboratory by flow3

cytometry with laser scattering or impedance detection. Due to limited capacity of automated4

hematology in performing TPC quantification, manual microscopy count is a very common quality5

assurance measure undertaken by clinical pathologists. Monitoring coagulation risk is key in many6

health conditions, and point-of-care platforms would simplify this procedure by taking platelet7

counts to the bedside. Spectroscopy has high-potential for reagent-less point-of-care miniaturized8

technologies. However, platelets are difficult to detect in blood by standard spectroscopy analysis,9

due to their small size, low number when compared to red blood cells, and low spectral contrast to10

hemoglobin. In this exploratory research, we show that it is possible to perform TPC by advanced11

spectroscopy analysis, using a new processing methodology based on self-learning artificial12

intelligence. Results show that TPC can be measured by visible-near infrared spectroscopy above13

the standard error limit of 61.19×109 cells/L (R2=0.7016), tested within the data range of 53×10914

to 860×109 cells/L of dog blood. These results open the possibility for using spectroscopy as a15

diagnostic technology for the detection of high levels of platelets directly in whole blood, towards16

the rapid diagnosis of thrombocytosis and stroke prevention.17
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1. Introduction19

Platelets (PLT) are the smallest cells in the blood, being responsible for coagulation20

and blood vessel repair. PLT counts reference interval in dogs is 300 to 500 ×109 cell/L.21

High PLT counts is a condition known as thrombocytosis, being attributed to abnormal22

bone marrow production or an ongoing condition such as anemia or inflammation [1].23

Thrombocytosis can result in blood clots, leading to life-threatening or impairing condi-24

tions such as heart attack or stroke [2]. Automated PLT counts are mostly performed by25

flow cytometry, electric impedance (Coulter principle) or laser-scattering technologies26

[3]. However, these methods are prone to erroneous PLT counts, because of changes27

in cell size and morphology, due to blood clotting, activation, aggregation, or even28

post-sampling artifacts. This limits scattering angle and impedance detection, leading to29

misidentification as larger cells, such as erythrocytes or leucocytes. Laser scattering is30

significantly more accurate than electric impedance, but the latter is cheaper and has a31

higher implementation in Veterinary Medicine. Veterinary doctors make use of blood32

smear PLT manual counts for ensuring results quality in abnormal (low or high) values33

[4].34

Visible shortwave near-infrared (Vis-NIR) spectroscopy has a high potential for the35

development of point-of-care (POC) without the need for reagents or complex sample36
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Figure 1. Platelets cell counts: (a) manual smear count at the microscope by trained hematologist
demonstrating the proportionality between (1) platelets, (2) white blood cells and (3) red blood
cells; and (b) Point-of-care approach - single blood drop spectroscopy counts using artificial
intelligence.

preparation. The developed Vis-SWNIR POC system (Figure 1b) records the blood37

spectra of a single drop of blood (<10 µL) to provide a significant number of clinical38

analysis parameters with real-time results [5].39

Visible short-wave near-infrared (Vis-SWNIR) spectroscopy is an information-rich40

technology that carries both physical and chemical information, where the information41

about blood cells and constituents is distributed across the different wavelengths. Dom-42

inant spectral information in blood comes from highly absorbent constituents in the43

Vis-SWNIR region, such as hemoglobin present in red blood cells (RBC) and bilirubin in44

blood serum.45

Platelets are present in significantly lower values than red blood cells (RBC) (Figure46

1a). PLT reference interval in dogs is 300 to 500 ×109 cells/L and RBC is 5500 to 850047

×109 cells/L, being at approximately 1:18 ratio to RBC, which difficults the detection:48

i. Smaller size of PLT with the significantly lower area and volume for light absorbance,49

resulting in low sensitivity in the spectral signal;50

ii. High interference between PLT and RBC, hemoglobin and bilirubin, which leads to51

the existence of significantly different characteristic interferences;52

iii. High variance of PLT morphology - which can vary from small platelets to activated53

platelets with branches, and clotted cells.54

PLT counts are difficult to obtain, even by microscopy methods, exhibiting high55

variability. Herein, we explore the capacity of Vis-SWNIR and self-learning artificial56

intelligence (SL-AI) for PLT quantification [5]. This new approach isolates spectral57

interference by searching consistent covariance between PLT and spectral features,58

which belong to a covariance mode (CovM). CovM is a set of samples that can hold59

a direct relationship between spectral features and PLT counts, by sharing a common60

latent structure [5]. Ideally, PLT counts are related to spectral interference features by61

a single latent variable (LV) or eigenvector. Such allows unscrambling the interference62

of PLT concerning the other blood constituents. This research provides a feasibility63

benchmark between the widely used chemometrics method partial least squares (PLS)64

and the SL-AI method.65
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Figure 2. Total platelet counts spectral quantification: (a) PLS and (b) SL-AI.

Figure 3. Percentage Total Error for PLS and SL-AI predictions: (1) ASVCP acceptable error limit
(25%)

2. Materials and Methods66

2.1. Hemogram analysis67

Dog blood samples from routine clinical practice were collected by qualified per-68

sonnel by standard venipuncture, at the Centro Hopitalar Veterinário do Porto. PLT69

was determined by Beckman-Coulter capillary impedance using Mindray B-2800 vet70

auto-hematology analyzer.71

2.2. Spectroscopy72

Blood spectra were recorded using a POC prototype using a 4500K power LED as73

a light source and USB-based miniaturized spectrometer (Ocean Insight STS-vis), with74

an optical configuration and plug-in capsule system according to [6]. LED temperature75

and spectrometer integration times were automatically managed to maintain result76

consistency. Three replicate measurements were made for each blood sample.77
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2.3. Chemometrics78

Spectral records were subjected to scattering correction (Mie and Rayleigh) before79

modeling. A feasibility benchmark is performed between PLS and SL-AI methods. PLS80

maximizes the global covariance between spectral features and PLT, by determining the81

orthogonal eigenvectors of the covariance matrix. The relationship between PLT and82

signal features is derived by the latent variables (LV), at each deflation. The number of83

LV is determined by cross-validation at the minimum value of the predicted residuals84

sum of squares (PRESS) [7].85

SL-AI searches for stable covariance in spectral datasets, finding covariance modes86

(CovM). CovM is a group of samples that contains the same interference information87

characteristics, holding proportionality between PLT and spectral features. Ideally, the88

relationship between PLT and spectral features is given by a single eigenvector or latent89

variable (LV). The CovM is validated by leave one-out cross-validation [5].90

3. Results and Discussion91

PLS model attains a correlation of 0.2613 with a very poor R2 (0.068), and a corre-92

sponding high SE of 175.99 ×109 cells/l. The PLS analysis shows that the correlation93

between spectral features and PLT counts is highly unstable and non-linear. Such is94

because PLT is present in much fewer quantities than other blood constituents (Figure95

1), as well as, due to the small size and high interference with the other major blood96

constituents (e.g. RBC, hemoglobin, and bilirubin). Another indication of non-linearity97

is that the PLS algorithm attains the optimum prediction error with two LV, resulting98

in a non-significant model (Figure 2a). The PLS is unable to increase the number of LV99

because the information about PLT is scattered in significantly different interference100

modes that cannot be collapsed into a linear oblique projection model [5,7]. PLS cannot101

be used in a POC as it does not attain a MAPE similar to 25% - the total allowable error102

established by the American Society for Veterinary Clinical Pathology (ASVCP) for PLT103

counts [8].104

SL-AI present a significant correlation of 0.8376, a SE of 61.19 ×109 cell/l, and MAPE105

of 24.67%, with R2 of 0.7016 (Table 1). SL-AI covariance modes (CovM) are obtained106

with 1 to 3 LV. Such means that, although statistically valid relationships are obtained107

for each CovM, some of these are integrating more than one type of interference. Under108

ideal conditions, all CovM should have only one LV, directly relating PLT counts and109

spectral interference.110

Results also show that non-dominant spectral information and low-scale spectral111

variation is unscrambled by the CovM principle. The number of LV can be attributed to112

the high diversity of PLT morphology present in dog blood (non-activated, activated,113

and clotted PLT) and particular conditions of the tested blood, with correspondence in114

the major constituents.115

Despite the limitations shown in this feasibility study, PLT quantification using116

Vis-SWNIR spectroscopy in conjunction with the new SL-AI algorithm can attain a total117

error estimate of 25%. Such result is following the ASVCP total allowable error for PLT118

in dog blood [8].119

Vis-SWNIR POC technology based on SL-AI has shown high potential for PLT120

quantification and thrombocytosis diagnosis. The results presented for dog blood are121

within the acceptable error defined by the ASVCP of 25% [8]. The presented results also122

allow extending the potential application to both human and other animal species in123

further studies.124

4. Conclusions125

This feasibility study has shown that low intensity, non-dominant, and multi-scale126

interferent spectral information is possible to be accessed, by unscrambling information127

with the CovM principle included in the SL-AI method. The small variations in the128

spectral signal that contain information about PLT cannot be modeled by PLS. SL-AI129
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Table 1. This is a table caption. Tables should be placed in the main text near to the first time they
are cited.

Method SE LV R2 MAPE(%) RPearson

PLS 175.99 2 0.068 88.89 0.2613
SL-AI 61.19 1-3 0.7016 24.67 0.8376

can unscramble PLT interference information based on the CovM principle, allowing the130

quantification of PLT. Future studies, with more samples, may provide better insights131

on the full potential of the developed POC technology in both veterinary and human132

medicine.133
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