1st International Electronic Conference on Chemical Sensors and Analytical Chemistry

Developing potentiometric PVC-plasticized sensors for Sc³⁺

Monireh Dehabadi^{1,2,*}, Eugene Legin¹, Andrey Legin¹, Soheila Yaghmaei^{2,*}, Vasiliy Babain¹, Dmitry Kirsanov^{1,*}

1 Institute of Chemistry, St. Petersburg State University, Russia 2 Department of Chemical and Petroleum Engineering, Sharif University of Technology, Iran

July 2021

Problem Statement

Scandium applications

- Electronics
- Metallurgical industry
- □ Catalysis □ Aerospace
- Nuclear medicine Optic and Laser
- □ Energy saving and fuel cells

by-products of mining & extraction of other metals

Sources of environmental release: *Mining activities industrial wastes*

Conventional analytical methods

- □ ICP-MS (Inductively Coupled Plasma Mass Spectrometry)
- □ ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy)
- □ NAA (Neutron Activation Analysis)
- □ XRF (X-ray Fluorescence)

Disadvantages

- Time-consuming
- High capital and operating costs
- Need for trained staff
- Sample preparation steps

Potentiometric sensors

- □ Cost effective
- Portable
- Real-time measurements
- □ High sensitivity
- Low detection limit
- Miniaturization capability
- Reasonable precision
- □ Fast response

Purpose of study

- □ The first potentiometric sensors for Sc³⁺
- D Potentiometric sensitivity towards Sc³⁺
- □ Study on selectivity coefficients
- □ Study on limit of detection
- □ Study the response time

Calibration was performed at 10^{-7} to 10^{-2} M of each ion The linear part of each sensor function plot (10^{-5} to 10^{-3} M)

Selectivity coefficient values of the sensors towards scandium, $\pm 0.2 log K_{Sc,Me}^{pot}$.

Sensors	La ³⁺	Eu ³⁺	Gd ³⁺	Lu ³⁺
M1	-2.0	-2.2	-0.9	-1.3
M2	-2.3	-2.7	-0.2	-0.1
M3	-2.3	-3.0	-2.1	-2.8
M4	-1.3	-1.9	-1.3	-1.9
M5	-1.1	-0.1	+0.6	-0.3

Detection limits (in $\pm 0.2pC_{Sc^{3+}}$) of sensors, at pH = 2

Sensors	M1	M2	M3	M4	M5
LOD	5.4	5.8	5.0	5.1	5.5

Bi-ionic potential method (BIP)

$$logk_{IJ}^{pot} = \left(\frac{z(I)F \times (E(J) - E(I))}{2.302 \times R \times T} + log\left(\frac{a(I)}{a(J)^{z(I)}/z(J)}\right)\right)$$

z= charge of ion a=activity E=electrode potential I=primary ion J=interfering ion K=selectivity coefficient F=Faraday constant

The more negative the log(k), the more selective is the sensor toward ion I

Dynamic response curve of the sensor M5 for step changes in scandium concentration

8/9

- □ The first potentiometric sensors for scandium ions
- D Phosphine oxides and diamides of organic acids are effective ligands for scandium sensing
- □ Sensors showed pronounced sensitivity and selectivity for Sc^{3+} detection at pH 2
- □ The lower detection limits of approximately 0.4 mg/l of Sc^{3+} were achieved
- □ Promising analytical tool alternative to the conventional methods

